Teurema un quaart da Koebe

From Wikipedia

Si f:\mathbb D \rightarrow \mathbb C a l'è una aplicazziun cunfurma, alura

\frac{1}{4} \left(1-\vert z     \vert^2    \right) \vert f^{\prime}(z)     \vert \leq dist\left(f(z),\partial f(\mathbb D )    \right) \leq \left(1-\vert z     \vert^2    \right) \vert f^{\prime}(z)     \vert par cada z\in\mathbb D.

[redatá] Refereenz

Ch.Pommerenke, 'Boundary behaviour of conformal maps', Springer Verlag, 1992