Assioma d'estensiunalitaa
From Wikipedia
![]() |
Artícuj relazziunaa a matemàtica |
![]() |
Cheest artícul al è scrivüü in Koiné matemàtica, urtugrafía ünificada. | ![]() |
L'assioma d'estensiunalitaa, u assioma d'estensiú, intervient in lògica, in matemàtica, e in infurmàtega. Al è ü di assiòom-cjaaf da tüta la teuría assiumàtega di cungjuunt e, in particülaar, ul primm assioma da la teuría ZF ( teuría di cungjuunt da Zermelo-Fraenkel ).
L'assioma d'estensiunalitaa al è intimameent liaa a la nuzziú d'igualtaa da düü cungjuunt. Al esiist in efett almaanch ciinch manere diferente da definí chesta nuzziú , e cheest assioma al permett da i ünifiá. Al serviss apó a impusá l'ünicitaa da cungjuunt definii par ul datum dij söö elemeent, cuma ul cungjuunt vöj, i singletú, i para, u i Cungjuunt da le parte.
Cuntegnüü |
[redatá] Presentazziú dal assioma
Par la varietaa da le definizziú da l'igualtaa, al esiist plüü da furmulazziú pussíbil da cheest assioma, però i pöö tüte sa repurtá a l'enunziaa in acordi a:
- si düü cungjuunt i gh'a i istess elemeent, alura i è i istess.
Si al è pussíbil da restá flou par vargot ch'al cuncerna la nuzziú d'igualtaa druvada in la furmulazziú chí-da-sura, al cuventa la precisá cura che sa vöör esprimm l'assioma int un lenguagg furmaal. Al è par vargott ch'al cuventa esaminá da plüü areent le diferente nuzziú d'igualtaa.
[redatá] I diverse nuzziú d'igualtaa
Le diferente teuríe di cungjuunt i definiss mia sémpar da la istessa manera la nuzziú d'igualtaa da düü cungjuunt. A recapitulemm chí le definizziú rincuntrade :
[redatá] Igualtaa paj elemeent
Al è l'igualtaa cuma l'è definida in la teuría naïve di cungjuunt par Cantor; la sarà nutada chí « =ig ». Sa la definiss furmalameent par :
- Düü cungjuunt i è iguaj paj elemeent si e noma si i gh'a i istess elemeent.
[redatá] Igualtaa par inclüsiú recípruca
Al è una varianta da la definizziú precedenta; la sarà nutada chí « ». La fa apell a la nuzziú da inclüsiú, da che la definizziú a l'è :
- Un cungjuunt E al è cuntegnüü int un cungjuunt F si e noma si cada elemeent da E al partegn a F.
L'igualtaa par inclusiú recípruca sa la definiss alura furmalameent par :
- Düü cungjuunt i è iguaj par inclüsiú recípruca si e noma si i è cuntegnüü l'ün in l'òolt.
Cheste dò prime definizziú da l'igualtaa i è evidentameent equivalente; al è assée da remplazzá l'inclüsiú par la suva definizziú e da sa regurdá che :
[redatá] Igualtaa par prupietaa
Al è l'igualtaa definida par Leibnitz sota ul nomm d'identitaa lògica, e nutada una völta « = » par che cunsiderada cuma plüü « forta » che l'igualtaa al sentüü da Cantor par una resú che a vedaremm un pocch plüü luntà; la sarà nutada chí « =P ». Sa la definiss furmalameent par :
- Düü cungjuunt i è iguaj par prupietaa si e noma si i verifica le istesse prupietaa.
Da fatt, sa na retröva in cheest caas cul istess uget sota düü nomm difereent ( ul nomm d'un uget al è mia una prupietaa propia a cheest uget; al è una etichèta ch'a la gh'è apusada ).
Chesta definizziú, ch'a la pareva natürala a tüta prima, la cascja da fatt una dificültaa : i prupietaa ga i è quantifiade ( « ∀ P » ). Adess, i prupietaa i è di predicaa, e noma la quantificazziú da le variàbile , mia la di predicaa al è auturizada in la lògica abitüala ( lògica di predicaa dal primm úrden' ).
Tré sulüzziú i è pussíbile :
- recürí a una lògica auturizaant la quantificazziú di predicaa, par esempi la lògica di predicaa dal seguunt úrden '; cheest al è mia la sulüzziú abitüalameent druvada, par che le lògiche d'úrden süperiuur al primm i è fisc plüü cumpless e i scuunt de le trape otrameent redüzzíbile che le da la lògica clàssica...
- truvá una definizziú equivalenta, però ch'a la faghes mia apell a la quantificazziú di predicaa; al è la sulüzziú druvada par esempi in la teuría NGB ( [[Classa (matemàtica)|teuría da le classe] ] da von Neumann, Gödel e Bernais );
- renunziá a definí l'igualtaa, e l'intrudüí cuma tèrmin primitiif da la lògica süb-gjacenta ( lògica cjamada cunt igualtaa ); al è ul caas par esempi da la teuría ZF.
[redatá] Igualtaa par classa
Al è l'igualtaa definida in la teuría NGB ; la sarà nutada chí « =C ». Sa la definiss furmalameent par :
- Düü cungjuunt i è iguaj par [[Classa (matemàtica)|classa] ] si e noma si i partegn a le istesse classe.
La nuzziú da classa la generaalise chela da cungjuunt. Una classa al è un cungjuunt si e noma si la è elemeent d'una otra classa; si-da-nò , al è un ünivèers.
Chesta definizziú a l'è equivalenta a la par prupietaa :
- - cuma a tüta prupietaa la pöö vess sucjada una classa, la di cungjuunt ch'i verifica chesta prupietaa, l'igualtaa par classa la implica la par prupietaa;
- - inversameent, cuma cada classa la gh'a una prupietaa caraterístega, l'igualtaa par prupietaa la implica la par classa.
Però la cumporta mia da quantificazziú da predicaa . In scambi, i è le variàbile da classa ch'i è quantifiade, vargot ch'al è lézzit íntal quàdar d'una lògica dal primm úrden.
[redatá] Igualtaa par definizziú mia direta
La sarà nutada chí « =D ». In la teuría ZF, l'igualtaa a l'è mia definida, però cunsiderada cuma tèrmin primitiif da la lògica süb-gjacenta ( lògica cjamada « cunt igualtaa » ), ch'al cumporta alura i assiòom necessari par definí un cumpurtameent da cheest tèrmin equivaleent a al da l'igualtaa par prupietaa.
[redatá] Assioma d'estensiunalitaa e igualtaa
Sa cunstata che le definizziú precedente sa i repartiss in düü grup da definizziú equivalente:
- - le dò prime definizziú d'una paart ( grup I ),
- - e le tré darere d'otra paart ( grup II ).
In resümii, a gh'emm :
Da plüü, sa pöö mustrá che l'igualtaa paj elemeent al è un caas particülaar da l'igualtaa par prupietaa, cunsiderant la prupietaa P(E) definida cuma x ∈ E. L'igualtaa par prupietaa la implica dunca l'igualtaa paj elemeent. Al è in cheest sentüü che, cuma indicaa plüü in òolt, l'igualtaa par prupietaa a l'è plüü forta che l'igualtaa paj elemeent. A en dedüissemm ul schéma chí-da-sota d'implicazziú dal grup II veers ul grup I :
Par utegní l'equivalenza da tüte cheste definizziú, al resta dunca noma a demustrá le implicazziú inverse, dal grup I veers ul grup II. Però chesta darera implicazziú al è òolt che l'assioma d'estensiunalitaa !
En passant, sa l pöö infí esprimm cheest assioma da manera furmala; a representaremm i söö difereent enunziaa pussíbil da manera cumpata sota la furma sigütanta :
Al è pussíbil da rincuntrá da le furmulazziú dal assioma indúe l'implicazziú a l'è remplazzada par una equivalenza, però, traa di caas particülaar, chesta equivalenza a l'è süpèrflüa.
Cada teuría scerniss l'üna da le definizziú precedente cuma definizziú da l'igualtaa, representada pal símbul « = », e le otre definizziú, almaanch le cumpatíbil cun chesta teuría, n i diventa di [[teurema|teureem] ].
[redatá] Òolt röö da cheest assioma
L'assioma d'estensiunalitaa al serviss mia noma a ünifiá le diferente definizziú da l'igualtaa di cungjuunt. Al serviss apó a assürá l'ünicitaa da cungjuunt fundamentaj, taj ul cungjuunt vöj u l para da düü cungjuunt, da che l'esistenza a l'è afirmada par di òolt assiòom.
A cheest efet, cunsideremm un predicaa ünari qual-sa-vöör P. Sa l pöö sémpar definí ul cungjuunt A cuma ul cungjuunt di ugett C ch'i verifica P, i.e. paj-quaj P( C ) al è vera.
Però definí un uget al süfiss mia a garantí la suva esistenza, ni maanch che al pöda esiist. Al cuventa par cheest :
- che la definizziú la síes cunsistenta, i.e. la porta mia a una cuntradizziú ;
- e che l'esistenza dal uget la síes afirmada paj assiòom da la teuría, u en al sigütes.
Ul cungjuunt A al esiist dunca mia si la suva definizziú la porta a una cuntradizziú , par esempi cul predicaa R definii par : « R( C ) » al equivaar a « C al partegn mia a C » (sa l retröva in cheest caas ul Paradoss da Russell).
Cun chesta riserva, i.e. si na limitemm aj predicaa cun dent una definizziú cunsistenta dal cungjuunt A, e si a definissemm un seguunt cungjuunt B da la istessa manera, a partí dal istess predicaa , alura l'assioma d'estensiunalitaa al imponn che i düü cungjuunt i è i istess.
- In efett, al síes x un élameent da B. Dapress la definizziú da B, x al verifica P. Però si x al verifica P, alura, dapress la definizziú da A, x al partegn a A. Dunca cada elemeent da B al partegn apó a A, e inscí B al è cuntegnüü in A. Scambiaant A e B in la démustrazziú precedenta, sa la utegn amò una démustrazziú vàlida, d'indúe A al è cuntegnüü in B. Sa la gh'a la dobia inclüsiú recípruca, dunca B al gh'a esatameent i istess elemeent che A e sa l cunfuunt cunt al.
- Nota : la demustrazziú chí-da-sura la pöö vess rendüda plüü evidenta si sa fa apell al curulari in acordi al assioma d'estensiunalitaa:
- Un cungjuunt al è cumpletameent determinaa paj söö elemeent, e ünicameent paj söö elemeent.
Inscí, cada cungjuuntA definii a partí d'un predicaa ünari P par la fórmüla :
al è ünich (a cundizziú da tüta manera ch'al esiist).
Sa l pöö alura intrudüí un símbul particülaar par désigná cheest cungjuunt, par esempi { a } pal singletú custrüii a partí da l'uget a, u { a , b } pal para furmaa par a e b,...
[redatá] Variante da l'assioma d'estensiunalitaa
L'assioma d'estensiunalitaa a l'è generalameent cunsideraa cuma indescütíbil , e al, u ü dij söö equivaleent, parisseva in tüta l'assiumàtega alternativa da la teuría di cungjuunt. Da tüta manera, al pöö sübí da le modificazziú par satisfá vargüne esigenze, cuma in l'esempi segueent.
[redatá] Int una teuría di cungjuunt cun di ur-elemeent
La nuzziú dur-elemeent, u àtum u amò elemeent primitif, la risülta da la furmalizazziú da la nuzziú delemeent da la teuría cantoriana. Cantor al sa ucüpava pocch da la natüra precisa daj söö elemeent; tütt vargot ch'al gh'a impurtava, al era che sa pudess i mett cungjuuntameent. Però, cuj primm sfoorz da furmalizazziú ( Zermelo), al è parüü necessari da distinguí i elemeent ch'i i era sí istess di cungjuunt da chij ch'i era mia : un elemeent al era dunca al síes un cungjuunt, al síes un elemeent primitif. Un elemeent primitif, u ur-elemeent al è dunca un elemeent, i.e. un uget süscetíbil da partegní a un cungjuunt, però ch'al è mia sí-istess un cungjuunt, e ch'al cumporta dunca nissü elemeent.
In la teuría da Zermelo-Fraenkel atüala, « tütt-coss al è cungjuunt », e a gh'è plüü d'ur-elemeent, però le prime versiú da Zermelo, ispirade par la teuría naïve, n i cumportava; vargüne assiumàteghe alternative da la teuría di cungjuunt n i gh'a amò. I ur-elemeent i pöö vess cunsideraa cuma lògicameent difereent di cungjuunt; íntal caas indúe A al è un ur-elemeent, « x ∈ A » al gh'a nissü sentüü; inscí, l'assioma d'estensiunalitaa sa l aplica noma aj cungjuunt (si-da-nò , cuma un ur-elemeent al gh'a mia d'elemeent, al sa cunfundaress cul cungjuunt vöj).
Alternativameent, int una lògica mia tipada, sa l pöö avidaa büsögn da dá un sentüü a « x ∈ A » ; chesta espressiú a l'è alura cunsiderada cuma falsa tüte le völte indúe A al è un ur-elemeent. In cheest caas, l'aplicazziú da l'assioma abitüaal d'estensiunalitaa la implicaress, cuma a venemm da vidé, che tütt ur-elemeent sa l cunfund cul cungjuunt vöj. Par evitá cheest-chí, a dévum mudifiá l'assioma d'estensiunalitaa al fí che al pöda s'aplicá noma aj cungjuunt mia-vöj. Sa l núnzia alura par esempi:
- assioma d'estensiunalitaa restrecc :
I.e. :
- daa di cungjuunt A e B qual-sa-vöör, si A a l'è un cungjuunt mia vöj (i.e. sa l esiist almaanch un elemeent C in A ), e si A e B i gh'a esatameent i istess elemeent, alura i è iguaj.