Electron microscope

From Simple English Wikipedia, the free encyclopedia

This page or section needs to be cleaned up. Please make this page better in any way that you can. Remove this box and the listing on the cleanup page after the article has been cleaned up. For tips on improving this article, read "How to edit a page" and "How to write Simple English articles".
An Electron microscope
An Electron microscope

In a nutshell, loop quantization is the result of applying C*-algebraic quantization to a non-canonical algebra of gauge-invariant classical observables. Non-canonical means that the basic observables quantized are not generalized coordinates and their conjugate momenta. Instead, the algebra generated by spin network observables (built from holonomies) and field strength fluxes is used.

Loop quantization techniques are particularly successful in dealing with topological quantum field theories, where they give rise to state-sum/spin-foam models such as the Turaev-Viro model of 2+1 dimensional general relativity. A much studied topological quantum field theory is the so-called BF theory in 3+1 dimensions. Since classical general relativity can be formulated as a BF theory with constraints, scientists hope that a consistent quantization of gravity may arise from the perturbation theory of BF spin-foam models.