Формула на Ойлер
от Уикипедия, свободната енциклопедия
Формулата на Ойлер е математическа формула от областта на комплексния анализ, показваща дълбоката връзка между тригонометричните функции и комплексната експоненциална функция.
Формулата на Ойлер гласи че за всяко реално число :
- където: е - основа на натуралния логаритъм,
- i - имагинерна единица,
- sin и cos са тригонометрични функции.
Ричард Фaйнман нарича формулата на Ойлер "скъпоценен камък" и "най-важната формула" в цялата математика (Feynman, p. 22-10).
Графика, показваща взаимовръзката между ,
и комплексната експоненциална функция. Ако искаме да обясним формилата на Ойлер с най-прости думи, това е равносилно на ротация на единичен вектор на ъгъл
.