კომპლექსური ანალიზი

ვიკიპედიიდან

კომპლექსური ანალიზი - მათემატიკის ნაწილი, რომელიც შეისწავლის კომპლექსური ცვლადის ფუნქციებს.

ასევე განარჩევენ მათემატიკის ქვედარგს მრავალი ცვლადის კომპლექსური ანალიზი.

კომპლექსური ფუნქცია არის ფუნქცია რომლიც განმარტებულია კომპლექსური რიცხვების ქვესიმრავლეზე და რომლის მნიშვნელობებიც კომპლექსური რიცხვებია. კომპლექსური ფუნქცია f–ისთვის შეიძლება გამოიყოს ნამდვილი და წარმოსახვით ნაწილები:

z = x + iy\,
w = f(z) = u(z) + iv(z) = u(x,y) + v(x,y)\,
სადაც x,y,u(z),v(z) \in \mathbb{R} ნამდვილი რიცხვებია, ხოლო i წარმოსახვითი ერთეული.

კომპლექსური ანალიზში განსაკუთრებული ყურადღებით შეისწავლება კომპლექსური ცვლადის ანალიზური ფუნქციები, ე.წ. ჰოლომორფული ფუნქციები. ე.ი. ფუნქციები რომლებიც კომპლექსურად დიფერენცირებადია. კომპლექსური დიფერენცირებადოვა ჩვეულებრივ დიფერენცირებადობაზე მნიშვნელოვნად ძლიერი პირობაა. ელემენტარული ფუნქციების უმრავლესობა ექსპონენციალური ფუნქცია, ტრიგონომეტრული ფუნქციები, პოლინომური ფუნქციები ჰოლომორფულია.

კომპლექსური ანალიზის წარმოშობა უკავშირდება მე–19 საუკუნეში გაუსის, კოშის, რიმანის, ვაიერშტრასის შრომებს. მე–20 საუკუნეში დარგი ინტენსიურად ვითარდებოდა. დღესდღეობით კომპლექსური ანალიზი მჭიდროდ უკავშირდება მათემატიკის სხვა დარგებს.

[რედაქტირება] იხილეთ ასევე

  • კოშის ინტეგრალური თეორემა
  • ხარისხოვანი მწკრივი
  • მერომორფული ფუნქცია
  • ლორანის მწკრივი
  • ნაშთი (კომპლექსური ანალიზი)


მათემატიკის მთავარი დარგები
ალგებრა | უმაღლესი ალგებრა | წრფივი ალგებრა | ანალიზი | ფუნქციონალური ანალიზი | კომპლექსური ანალიზი | რიცხვითი ანალიზი | დიფერენციალური განტოლებები | რიცხვთა თეორია | დისკრეტული მათემატიკა | სიმრავლეთა თეორია | ლოგიკა | კატეგორიათა თეორია | გეომეტრია | ალგებრული გეომეტრია | ტოპოლოგია | ალგებრული ტოპოლოგია | დიფერენციალური ტოპოლოგია | ალბათობის თეორია | სტატისტიკა