หลักเกณฑ์โลปีตาล

จากวิกิพีเดีย สารานุกรมเสรี

ในแคลคูลัส หลักเกณฑ์โลปีตาล (l'Hôpital's rule) ใช้อนุพันธ์เพื่อช่วยในการคำนวณลิมิตที่อยู่ในรูปแบบยังไม่กำหนด (indeterminate forms) หลักเกณฑ์นี้มักนำมาใช้ในการเปลี่ยนรูปแบบยังไม่กำหนด เป็นรูปแบบกำหนด เพื่อให้ง่ายต่อการคำนวณลิมิต

[แก้] ภาพรวม

เมื่อต้องการหาค่าลิมิตของผลหาร f(x)/g(x) ซึ่งทั้งตัวเศษและตัวส่วนมีค่าเข้าใกล้ 0 หรือ ตัวส่วนมีค่าเข้าใกล้อนันต์ หลักเกณฑ์โลปีตาล กล่าวว่า การหาอนุพันธ์ของตัวเศษและตัวส่วน จะไม่ทำให้ลิมิตเปลี่ยนแปลง อย่างไรก็ตาม เรามักนิยมแปลงผลหารให้อยู่ในรูปแบบกำหนด เพื่อให้ง่ายต่อการคำนวณ

หรือกล่าวว่า ถ้า c \in \mathbb{R}^* และ

\lim_{x\to c}{f'(x) \over g'(x)} = A, A \in \mathbb{R}
\begin{cases}   \lim_{x\to c}{f(x)} = \lim_{x\to c}g(x) = 0  \\   \mbox{or} \\    \lim_{x\to c}{|g(x)|} = +\infty  \end{cases}

แล้ว

\lim_{x\to c}{f(x)\over g(x)}=A

โปรดสังเกตเงื่อนไขที่ว่าลิมิต f′/g′ มีอยู่จริง บางครั้งการหาอนุพันธ์อาจได้ผลลัพท์ที่หาลิมิตไม่ได้ในกรณีนี้หลักเกณฑ์โลปีตาลไม่ครอบครุม


  หลักเกณฑ์โลปีตาล เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น
ข้อมูลเกี่ยวกับ หลักเกณฑ์โลปีตาล ในภาษาอื่น สามารถหาอ่านได้จากเมนู ภาษาอื่น ๆ ด้านซ้ายมือ