Số nguyên tố Gauss

Bách khoa toàn thư mở Wikipedia

Một số nguyên Gauss là một số phức với phần thực và phần ảo đều là các số nguyên. Tập các số nguyên Gauss là một miền nguyên, thường được ký hiệu là Z[i].

Các số nguyên Gauss là các điểm nguyên trên mặt phẳng phức
Các số nguyên Gauss là các điểm nguyên trên mặt phẳng phức

Như vậy, các số nguyên Gauss là tập hợp

\{a+bi | a,b\in \mathbb{Z} \}.

Chuẩn của số nguyên Gauss là số tự nhiên xác định bằng

N(a + bi) = a2 + b2.

Chuẩn có tính chất nhân, nghiã là

N(z·w) = N(z)·N(w).

Đơn vị của Z[i] là tất cả các phần tử có chuẩn bằng 1, nghĩa là gồm các phần tử

1, −1, i và −i.

Các phần tử nguyên tố của Z[i] cũng được gọi là các số nguyên tố Gauss. Một vài số nguyên tố thông thường (đôi khi để phân biệt, chúng được gọi là các "số nguyên tố hữu tỷ") không phải là các số nguyên tố Gauss; chẳng hạn 2 = (1 + i)(1 − i) và 5 = (2 + i)(2 − i). Các số nguyên tố hữu tỷ đồng dư với 3 (mod 4) là số nguyên tố Gauss; còn các số nguyên tố hữu tỷ đồng dư 1 (mod 4) thì không. Đó là vì số nguyên tố dạng 4k + 1 luôn có thể viết dưới dạng tổng của hai bình phương(định lý Fermat), do đó ta có

p = a2 + b2 = (a + bi)(a − bi).

Nếu chuẩn của số nguyên Gauss z là một số nguyên tố, thì z cũng là số nguyên tố Gauss, vì mọi ước không tầm thường của z cũng là ước không tầm thường của chuẩn. Chẳng hạn 2 + 3i là một số nguyên tố Gauss vì chuẩn của nó là 4 + 9 = 13.

[sửa] Xem thêm