Gerak melingkar

Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.

Artikel ini sedang dalam perubahan besar dalam 6 jam.
Dengan demikian diharapkan supaya tidak melakukan perubahan isi artikel ini selama pesan ini ditampilkan.

Pesan ini untuk menginformasikan agar pengguna lain tidak melakukan penyuntingan sehingga konflik penyuntingan bisa dihindari.
(Catatan: pesan ini dapat dihapus setelah waktu yang dicadangkan sudah terlewati)

Gerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan linkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran [1].

Daftar isi

[sunting] Besaran gerak melingkar

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah \theta\!, \omega\! dan \alpha\! atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan r\!, v\! dan a\!.

Besaran gerak lurus dan melingkar
Gerak lurus Gerak melingkar
Besaran Satuan (SI) Besaran Satuan (SI)
poisisi r\! m sudut \theta\! rad
kecepatan v\! m/s kecepatan sudut \omega\! rad/s
percepatan a\! m/s2 percepatan sudut \alpha\! rad/s2
- - perioda T\! s
- - radius R\! m

[sunting] Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya \omega\!, yaitu:

  • gerak melingkar berarturan, dan
  • gerak melingkar berubah beraturan.

[sunting] Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut \omega\! tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial v_T\! dengan jari-jari lintasan R\!

\omega = \frac {v_T} R

Arah kecepatan linier v\! dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial v_T\!. Tetapnya nilai kecepatan v_T\! akibat konsekuensi dar tetapnya nilai \omega\!. Selain itu terdapat pula percepatan radial a_R\! yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.

a_R = \frac {v^2} R = \frac {v_T^2} R

Bila T\! adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran \theta = 2\pi R\!, maka dapat pula dituliskan

v_T = \frac {2\pi R} T \!

[sunting] Gerak melingkar berubah beraturan

Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut \alpha\! tetap. Dalam gerak ini terdapat percepatan tangensial a_T\! (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial v_T\!).

\alpha = \frac {a_T} R

[sunting] Persamaan parametrik

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:

  • titik awal gerakan dilakukan (x_0,y_0)\!
  • kecepatan sudut putaran \omega\! (yang berarti suatu GMB)
  • pusat lingkaran (x_c,y_c)\!

untuk kemudian dibuat persamaannya [2].

Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan R\! yang diperoleh melalui:

R = \sqrt{(x_0 - x_c)^2 + (y_0 - y_c)^2} \!

Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu

x(t) = x_c + R cos(\omega t + \phi_x) \!
y(t) = y_c + R sin(\omega t + \phi_y) \!

dengan dua konstanta \phi_x \! dan \phi_y \! yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai (x_0,y_0)\!, maka dapat ditentukan nilai \phi_x \! dan \phi_y \!:

\phi_x = \arccos \left( \frac{x_0 - x_c}{R} \right)\!
\phi_y = \arcsin \left( \frac{y_0 - y_c}{R} \right)\!

[sunting] Hubungan antar besaran linier dan angular

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

[sunting] Kecepatan tangensial dan kecepatan sudut

Kecepatan linier total dapat diperoleh melalui

v  = \sqrt{v_x^2 + v_y^2}

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

v_T  = v = \sqrt{v_x^2 + v_y^2}

dengan

v_x  = \dot{x} = \frac{dx}{dt}
v_y  = \dot{y} = \frac{dy}{dt}

diperoleh

v_x  = -\omega R \sin(\omega t + \phi_x) \!
v_y  = \omega R \cos(\omega t + \phi_x) \!

sehingga

v_T  = \sqrt{(-\omega)^2 R^2 \sin^2(\omega t + \phi_x) + \omega^2 R^2 \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R \sqrt{\sin^2(\omega t + \phi_x) + \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R\!

[sunting] Percepatan tangensial dan kecepatan sudut

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui

a  = \sqrt{a_x^2 + a_y^2}

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

a_T  = a = \sqrt{a_x^2 + a_y^2}

dengan

a_x  = \ddot{x} = \frac{d^2x}{dt^2}
a_y  = \ddot{y} = \frac{d^2y}{dt^2}

diperoleh

a_x  = -\omega^2 R \cos(\omega t + \phi_x) \!
a_y  = -\omega^2 R \sin(\omega t + \phi_x) \!

sehingga

a_T  = \sqrt{(-\omega)^4 R^2 \cos^2(\omega t + \phi_x) + \omega^4 R^2 \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R \sqrt{\cos^2(\omega t + \phi_x) + \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R\!

[sunting] Kecepatan sudut tidak tetap

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa

\omega \rightarrow \omega(t) = \int \alpha dt = \omega_0 + \alpha t \!

dengan \alpha\! percepatan sudut dan \omega_0\! kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.

[sunting] Catatan

  1. Richard S. Westfall, Circular Motion in Seventeenth-Century Mechanics, Isis, Vol. 63, No. 2. (Jun., 1972), pp. 184-189.
  2. Chapter 22 Parametric Equation,, Department of Mathematics, University of Washington, Math 124 Materials (Autumn), ch 22, pp. 308.