스칼라 곱
위키백과 ― 우리 모두의 백과사전.
스칼라 곱(scalar product, dot product)은 두 벡터로 스칼라를 계산하는 이항연산이다. 스칼라 곱을 사용하는 모든 유클리드 공간은 내적공간이다.
두 벡터 a = [a1, a2, … , an], b = [b1, b2, … , bn]의 스칼라 곱은 다음과 같다:
예를 들어, 두 벡터 [1, 3, −2], [4, −2, −1]의 스칼라 곱은
- [1, 3, −2]·[4, −2, −1] = 1×4 + 3×(−2) + (−2)×(−1) = 0.
이 된다.
![]() |
이 문서는 수학에 관한 토막글입니다. 서로의 지식을 모아 알차게 문서를 완성해갑시다. |