Perbandingan modél Bayes

Ti Wikipédia, énsiklopédi bébas

Model data posterior probabiliti, P(H|D), ngagunakeun Bayes' theorem:

P(H|D) = P(D|H)P(H)/P(D)

Wates konci data-dependent P(D|H) nyaeta likelihood, jeung kadangkala disebut kajadian keur model H; evaluasi nu bener ngarupakeun konci dina model perbandingan Bayes.

Kajadian umumna normalizing constant atawa partition function tina kaputusan sejen, disebut model paramater kaputusan H ti data D.

Hal nu asup akal di model dua beda H1 jeung H2, parametrised ku model vektor θ1 jeung θ2 nu ditaksir make Bayes factor dirumuskeun ku

\frac{P(D|H2)}{P(D|H1)}  = \frac{\int P(\theta_2|H2)P(D|\theta_2,H2)\,d\theta_2} {\int P(\theta_1|H1)P(D|\theta_1,H1)\,d\theta_1 }.

[édit] Sumber sejen

  • Gelman, A., Carlin, J.,Stern, H. and Rubin, D. Bayesian Data Analysis. Chapman and Hall/CRC.(1995)
  • Bernardo, J., and Smith, A.F.M., Bayesian Theory. John Wiley. (1994)
  • Lee, P.M. Bayesian Statistics. Arnold.(1989).
  • Denison, D.G.T., Holmes, C.C., Mallick, B.K., Smith, A.F.M., Bayesian Methods for Nonlinear Classification and Regression. John Wiley. (2002).

[édit] Tumbu kaluar

  • The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, has many chapters on Bayesian methods, including introductory examples; compelling arguments in favour of Bayesian methods; state-of-the-art Monte Carlo methods, message-passing methods, and variational methods; and examples illustrating the intimate connections between Bayesian inference and data compression.</math>