Απόσταση (γεωμετρία)

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Στη βασική Γεωμετρία η έννοια της απόστασης ορίζεται ως το ελάχιστο μήκος ευθύγραμμου τμήματος που συνδέει σημεία, ευθείες ή επίπεδα μεταξύ τους. Συγκεκριμένα απαντάται στις ακόλουθες περιπτώσεις:

  • Απόσταση μεταξύ δύο σημείων: λέγεται το μήκος του ευθύγραμμου τμήματος που συνδέει τα δύο αυτά σημεία.
  • Απόσταση σημείου από ευθείας: λέγεται το τμήμα καθέτου αγομένης από σημείου προς την ευθεία, η σημείου που συναντάται (προεκτεινόμενη) η ευθεία.
  • Απόσταση δύο παραλλήλων ευθειών: λέγεται το μήκος της μεταξύ αυτών κοινής καθέτου, τέμνουσα αμφοτέρας.
  • Απόσταση μεταξύ δύο ασυμβάτων ευθειών(δηλαδή μη κείμενων στο αυτό επίπεδο): λέγεται το μήκος της μεταξύ αυτών κοινής καθέτου.
  • Απόσταση σημείου από επιπέδου: λέγεται το μήκος της καθέτου το αγόμενο από του σημείου προς το επίπεδο.
  • Απόσταση μεταξύ δύο παραλλήλων επιπέδων: λέγεται το μεταξύ τούτων τμήμα οποιασδήποτε κοινής καθέτου διέρχόμενης αμφοτέρων.
  • Απόσταση μεταξύ δύο συνόλων από σημεία: λέγεται το τμήμα του οποίου τα ακρα είναι από το ενα και το αλλο σύνολο και έχει το μικρότερο μήκος.

Τυπικά η απόσταση ορίζεται ως απόσταση μεταξύ δύο σημείων. Σε όλες τις παραπάνω περιπτώσεις αυτό ειναι που υπολογίζεται.

Στους ευκλείδειους χώρους χρησιμοποιείται συνήθως η ευκλείδεια μετρική, που ορίζει την απόσταση όπως την καταλαβαίνουμε διαισθητικά. Έτσι στον \R^n η απόσταση μεταξύ δύο σημείων x=(x_1,\dots,x_n) και y=(y_1,\dots,y_n) ορίζεται σύμφωνα με την ευκλείδεια μετρική ως   \left( \sum_{i=1}^n \left| x_i - y_i \right|^2 \right)^{1/2}.

Στη γενική περίπτωση ενός συνόλου Μ η απόσταση μπορεί να δοθεί από μία συνάρτηση d: M \times M \to \R, η οποία ειναι ταυτοτική, συμμετρική και πληροί την τριγωνική ανισότητα (μετρική).el:Απόσταση