인공신경망
위키백과 ― 우리 모두의 백과사전.
인공신경망(Neural network, 뉴럴 네트워크, 줄여서 뉴럴넷)은, 뇌기능의 특성 몇 가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다. 신경망이라고도 하지만, 생물학이나 뇌과학과 구별하기 위해 앞에 '인공'을 붙인다.
인공신경망은 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)이 학습을 통해 시냅스의 결합 세기를 변화시켜, 문제 해결 능력을 가지는 모델 전반을 가리킨다. 좁은 의미에서는 오차역전파법을 이용한 다층퍼셉트론을 가리키는 경우도 있지만, 이것은 잘못된 용법이다.
인공신경망에는 교사 신호(정답)의 입력에 의해서 문제에 최적화되어 가는 교사 학습과 교사 신호를 필요로 하지 않는 비교사 학습이 있다. 명확한 해답이 있는 경우에는 교사 학습이, 데이터 클러스터링에는 비교사 학습이 이용된다. 결과적으로 모두 차원을 줄이기 위해, 화상이나 통계 등 다차원량의 데이터로, 선형 분리 불가능한 문제에 대해서, 비교적 작은 계산량으로 양호한 회답을 얻을 수 있는 것이 많다. 그 때문에, 패턴 인식이나 데이터 마이닝 등, 다양한 분야에서 응용되고 있다.