Бактерии

от Уикипедия, свободната енциклопедия

Табела за ремонт

Тази статия се нуждае от подобрение.

Необходимо е: форматиране и препратки. Ако желаете да помогнете на Уикипедия, просто щракнете на редактиране и нанесете нужните корекции.



Escherichia coli
 E. coli, 10 000×
E. coli, 10 000×
Класификация
Таксон |империя| Бактерии | Bacteria

Бактериите са предимно едноклетъчни микроорганизми, принадлежащи към прокариоти те. Притежават клетъчна стена и ядрен материал без [[ядрена мембрана. В зависимост от строежа на клетъчната стена бактериите са еубактерии (Грам-отрицателни и Грам-положителни, микоплазми) и архебактерии. Размножават се чрез делене, рядко чрез пъпкуване. Форма - кълбовидна (коки), пръчковидна (бацили, клостридии, спирохети, псевдомонади), извита (вибриони, спирили, спирохети). Диаметър 0,1-10 µm, дължина 1-20 µm (нишковидните многоклетъчни - 50-100 µm). Хетеротрофи или автотрофи, аероби и анаероби. Космополити (по всички континенти), срещат се във въздуха, водата, почвата, растенията, животните и човека, в хранителните продукти и предметите. Участват в кръговрата на веществата в природата, в образуването и разрушаването на полезните изкопаеми, във формирането на структурата и плодородието на почвата. Приложение - в хранителната, микробиологическата, химическата и др. промишленост. Патогенните бактерии причиняват болести по растенията (бактерийни болести), животните и човека (антракс, туберкулоза, бруцелоза и др.). Предполага се, че бактериите са първите организми на Земята.

Обмяна на генетичния материал на бактериите чрез конюгация

Обмяната на генетичния материал при бактериите чрез конюгация е биологичен процес, при който две бактериални клетки осъществяват пренасянето на генетичния материал от едната клетка в другата. Клетката, която отдава генетичен материал се нарича клетка – донор, а другата, която приема генетичен материал се нарича клетка – реципиент. Процесът конюгация се различава от процеса трансформация по два основни белега: 1. Двете бактериални клетки са от различен пол. Мъжката отдава генетичен материал, а женската го приема; 2. При двете клетки се осъществява пряк контакт. Конюгацията е първият полов процес в природата (плазмид – кодиран процес).

Условия за протичане на конюгация: Трябва да има клетка донор F - мъжка клетка. Донорната клетка съдържа конюгативен плазмид, който осъществява свързването на двете бактериални клетки. Същият този плазмид обуславя израстването на секспили, чрез които се осъществява свързването на двете бактериални клетки. Свързването им се извършва по различен начин при G и G бактериални клетки. При G бактериална клетка свързването на клетката донор F и F реципиент се осъществява с помощта на секспила. По повърхността на женската клетка F се намират рецептори – специфични химични съставки, с помощта на които секспилата се свързва с женската клетка. След свързването на двете клетки се получава така наречената конюгационна двойка. Клетката донор F с помощта на секспила се свързва с женската клетка реципиент. В клетката донор двете комплементарни вериги на ДНК се разделят – една от комплементарните вериги навлиза в клетката реципиент, при което в нея започва да се синтезира комплементарна верига на ДНК. В зависимост от времето, през което двете клетки са заедно в клетката реципиент, постъпва различна дължина от ДНК на донорната клетка. По дължината на ДНК са разположени гените, които обуславят характерните белези на клетката реципиент. От момента на навлизането на ДНК в клетката реципиент може да се определи количеството на преминалата ДНК от клетката донор. Този начин на проследяване на навлязлата ДНК се нарича генетично картиране. Новата клетка, която се образува, се нарича мерозигота. За да се предаде генетичния материал от клетката донор в клетката [[[реципиент]] е необходимо F факторът да бъде свързан с ДНК на клетката донор. В това интегрирано състояние клетката донор може да предава генетичен материал и тази клетка се нарича Hfr (high frequency recombination) – съдържа [[хидролитични ензими], които разпадат клетъчната стена на F клетката.


Ако при кръстосване участват клетки Hfr, рекомбинантите възникват хиляди пъти по – често, отколкото при кръстосването с щамове F . Освен това както рекомбинантните така и всички останали женски клетки в популацията се запазват в състояние F . Това показва, че клетките Hfr за разлика от клетките F не пренасят в клетката реципиент свободния фактор F. От смес на клетки F и клетки Hfr през определени интервали от време след започване на конюгацията се вземат проби. Чрез силно разклащане на пробите партньорите се разделят. След това пробите се засяват в петри за откриване на рекомбинантите. Те се изследват за да се установи какви гени са пренесени от мъжките клетки в клетките реципиенти. Установено е, че всеки ген се пренася в женската клетка в точно определен момент след началото на конюгацията. Този процес се нарича прекъсната конюгация. Предаването на гените през определени интервали от време съответства на последователното им разположение в бактериалната хромозома, което е установено в резултат на генетичен анализ. Това означава, че всеки щам Hfr представлява хомогенна популация, всички клетки на която пренасят своята хромозома по един и същи начин – започвайки от определен участък и в едно и също направление. Колкото по- далеч се разполага даден ген от началото на хромозомата, толкова по – късно той се пренася и толкова по – рядко попада в клетката реципиент, даже и ако конюгацията не се прекъсва изкуствено. Пренасянето на цялата хромозома продълйава около 90 минути. В много редки случаи, когато в клетката реципиент попадат и най – отдалечените от началото на хромозомата гени, се наследява обикновено и признакът Hfr. Следователно при клетките Hfr половият фактор представлява част от бактерийната хромозома]] и не може да се предава самостоятелно.

Щамовете Hfr, които са изолирани независимо един от друг от един изходен щам, се различават по два главни признака: 1. като начало при отделните щамове служат различни точки от хромозомата; 2. всеки щам се отличава със своя специфична последователност при пренасянето на гените. При мутация на клета Hfr факторът F се включва на някое място в бактериалната хромозома. При конюгацията хромозомата се разкъсва в това място и основната част от фактора остава в нейния край. Цялата хромозома може да се пренесе в реципиентната клетка при интегриране на половия фактор в нея. Интеграцията се извършва в хомоложни участъци на ДНК с последователно разкъсване и възстановяване. По този начин от двете пръстеновидни молекули ДНК възниква една пръстеновидна хромозома. При клетките Hfr може да настъпи обратна мутация, при което те се връщат в състояние F (реверсия). Половият фактор се отделя отново в хромозомата. Реверсията преминава през същите етапи както интеграцията, но в обратна последователност.

Роля на плазмидите при конюгацията на бактериите

Плазмидите като незадължителни елементи могат да присъстват в клетката, но могат и да отсъстват от нея. Те контролират генетичните свойства, които не са жизнено необходими, но могат да придават на бактериалната клетка нови фенотипни свойства. Конюгацията протича в два стадия, в които участват плазмидни гени: 1. взаимодействие между повърхността на донорната и акцепторната бактерия с помощта на секс пилите; 2. преминаването на молекула на плазмидна ДНК от донорната клетка в акцепторната. Бактерията може да носи два плазмида, единият, който участва в конюгацията, а другият – не. Първият може да мобилизира и да осигури едновременен пренос на втория плазмид. Трансгенеза (пренос) може да стане и когато двата плазмида са постоянно или временно интегрирани в резултат на кросинговър. Бактериалната хромозома също може да бъде пренесена в реципиентната благодарение на интеграцията с хромозомен плазмид.

Към извънхромозомните кинетични елементи се отнасят и инсерционните последователности. Това са обособени генетични елементи с постоянни размери и определена последователност и могат да се пренасят от един генетичен локус в друг. Имат размери 800 до 1400 нуклеотидни двойки и се различават от фагите. Транспозиция – когато един локус се интегрира в друг (чрез делеция от хромозомата). Транспозициите са сходни с инсерционните елементи и представляват фрагмент ДНК, който включва няколко гена, завършващи в двата си края с идентични инсерционни последователности, подредени в права или обратна ориентагия. Транспозоните са способни да се вграждат в много участъци на генома на клетката. Те могат да преминават от плазмида на бактерийната хромозома, надруги плазмиди или на умерен фаг. Тези ДНК последователности съдържат гени, които контролират устойчивостта към антибиотици.


Генетична рекоминация. Като генетични системи бактериите могат да пренасят генетичен материал чрез различен механизъм: 1. Трансформация; 2. Конюгация; 3. Транздукция и фагова инфекция; 4. Трансфекция. Благодарение на тези механизми различни по големина нуклеотидни последователности се предават от поколение на поколение с образуване на рекомбинантни потомства.

Образуването на рекомбинанти протича през няколко етапа: 1. Узнаване на хомоложни участъци между донорната ДНК и хромозомата на реципиента 2. Образуване на мерозигота 3. Протичане на рекомбинация или интеграция 4. Сегрегация или отделяне на различни рекомбинантни клонове в процеса на клетъчното делене.

Сега са известни три различни механизми на рекомбинация на попадналата чужда ДНК в бактериалната клетка с хромозомата на реципиента in vivo: обща хомоложна рекомбинация; местоспецифична; нехомоложна. Молекулните механизми на рекомбинациите показват, че това са сложни процеси с участие на редица ензими и ензимни системи. Могат да участват и различни по големина фрагменти на ДНК. Най – малката единица за рекомбинация е мононуклеотидният чифт и се означава като рекон. Генетичните рекомбинации зависят от качествата на реципиентните клетки. Картинка:Бактерии.jpg

Обмяна на генетичния материал при бактериите чрез трансфекция}}Трансфекцията е биологично явление, при което се предава генетичен материал на клетката реципиент от фаг. Бактериалната клетка приема генетичния материал на фага (ДНК и по – рядко РНК). От ДНК на фага се отделя определен фрагмент. Този фрагмент се включва в ДНК на клетката реципиент. Новите свойства, които се предават от фага, се включват в генома на бактериалната клетка. За разлика от трансдукцията фагът не носи чужда ДНК, а отдава на клетката реципиент собствената си ДНК. Предадените свойства на клетката реципиент не произлизат от друга бактериална клетка, а от ДНК на фага. Той в случая се явява като донор на генетичен материал за бактериалната клетка – по този начин се предават различни свойства. В много случаи фагът може да предаде на бактериалната клетка свойството за патогенност.



Използвана литература:

Лекции по Микробиология на проф. Чомаков Обща микробиология – Стоян Влахов и Александър Иванов, 1996г.