Uporabnik:Davorin/Peskovnik

Iz Wikipedije, proste enciklopedije

p:\mathbb{R} \to \mathbb{R}\quad p:x \mapsto p(x)

\mathbb{R}

\mathbb{N}

{\Bbb N} {\Bbb Q} {\Bbb C} {\Bbb Z} {\Bbb R}

a2(o)

n =  \pm a_{n - 1} a_{n - 2}  \ldots a_{1} a_{0(o)}

n =  \pm a_{n - 1} a_{n - 2}  \ldots a_{1} a_{0(o)}

0 \le a_{k}  \le o - 1

(p_{n}  + q_{m})(x) = \sum_{k = 0}^{n} a_{k} x^k  + \sum_{l = 0}^{m} a_{l} x^l  = \sum_{k = 0}^{\max (m,n)} (a_{k}  + b_{k } )x^k


(c \cdot p)(x) = \sum_{k = 0}^{n} ca_{k} x^k  ,c \in \mathbb{R}

\mathbb{R}


(p_{n}  \cdot q_{m} )(x) = \left( {\sum_{k = 0}^{n} a_{k } x^k } \right) \cdot \left( {\sum_{l = 0}^{m} b_{l } x^l } \right) = \sum_{k = 0}^{n} {\sum_{l = 0}^{m} a_{k} b_{l } x^{k + l} }  = \sum_{i = 0}^{n + m} {\left( {\sum_{k + l = i}^{} a_{k} b_{l } } \right)} x^i

x^{2} \geq 0\qquad \textrm{for all }x\in\mathbb{R}

\vec a\quad\overrightarrow{AB}

\leq

Insertformulahere

\mathcal{B}=c


Polynomial of degree 2: f(x) = x2-x-2=(x+1)(x-2)
Polynomial of degree 2: f(x) = x2-x-2=(x+1)(x-2)
Polynomial of degree 3: f(x)  = x3/5+4x2/5-7x/5-2=1/5 (x+5)(x+1)(x-2)
Polynomial of degree 3: f(x) = x3/5+4x2/5-7x/5-2=1/5 (x+5)(x+1)(x-2)
Polynomial of degree 4: f(x) = (x+4)(x+1)(x-1)(x-3)/14+0.5
Polynomial of degree 4: f(x) = (x+4)(x+1)(x-1)(x-3)/14+0.5
Polynomial of degree 5: f(x) = (x+4)(x+2)(x+1)(x-1)(x-3)/20+2
Polynomial of degree 5: f(x) = (x+4)(x+2)(x+1)(x-1)(x-3)/20+2