สมการเชิงอนุพันธ์

จากวิกิพีเดีย สารานุกรมเสรี

สมการเชิงอนุพันธ์ (Differential equation) เป็นรูปแบบสมการหนึ่งในคณิตศาสตร์ เป็นพื้นฐานที่สำคัญในสาขาคณิตศาสตร์ประยุกต์ ในทางวิศวกรรมศาสตร์ และวิทยาศาสตร์ เพราะว่ากฏเกณฑ์และปัญหาต่างๆ ในสาขาวิขาเหล่านี้ล้วนพิจารณาเป็นสมการคณิตศาสตร์ที่อยู่ในรูปของสมการเชิงอนุพันธ์แทบทั้งสิ้น เช่นกฎการเคลื่อนที่ของนิวตัน ปัญหาของการนำความร้อนในแท่งโลหะ การหาปะจุหรือกระแสในวงจรไฟฟ้า เหล่านี้เป็นต้น


สมการเชิงอนุพันธ์ เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น
ข้อมูลเกี่ยวกับ สมการเชิงอนุพันธ์ ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ

[แก้] ประเภทของสมการเชิงอนุพันธ์

  • สมการเชิงอนุพันธ์สามัญ (Ordinary Differential Equation) หมายถึงสมการเชิงอนุพันธ์ที่มีฟังก์ชันไม่ทราบค่าของตัวแปรอิสระเพียงตัวเดียว
  • สมการเชิงอนุพันธ์ย่อย (Partial Differential Equation) หมายถึงสมการเชิงอนุพันธ์ที่มีฟังก์ชันไม่ทราบค่าของตัวแปรอิสระมากกว่าหนึ่งตัวแปร

[แก้] สมการเชิงอนุพันธ์อันดับหนึ่งและดีกรีหนึ่ง

  • สมการแบบแยกตัวแปรได้
  • สมการเอกพันธ์
  • สมการที่ลดรูปเป็นสมการเอกพันธ์ได้
  • สมการแม่นตรง
  • สมการเชิงเส้น
  • สมการของแบร์นูลลี
  • สมการของริกคาตี