อนุกรมฟูริเยร์
จากวิกิพีเดีย สารานุกรมเสรี
อนุกรมฟูริเยร์ ตั้งชื่อตาม โจเซฟ ฟูริเยร์ อนุกรมฟูริเยร์เป็นเทคนิคทางคณิตศาสตร์ที่มีประโยชน์ เช่นใช้ในการแยกปัญหาออกเป็นส่วนย่อยๆ ที่ง่ายกว่าปัญหาดั้งเดิม โดยอนุกรมฟูริเยร์ นั้นเป็นการกระจายฟังก์ชันคาบ ที่มีคาบ 2π ให้อยู่ในรูปผลบวกของ ฟังก์ชันคาบในรูป
ซึ่งเป็น ฮาร์โมนิก ของ ei x หรือ อาจเขียนในรูปของฟังก์ชัน ไซน์ และ โคไซน์
ดูประวัติที่บทความหลัก การแปลงฟูริเยร์
[แก้] นิยาม
พิจารณาฟังก์ชันจำนวนเชิงซ้อน f(x) ของตัวแปรซึ่งมีค่าเป็นจำนวนจริง ที่มีคาบ 2π และ สามารถหาค่าปริพันธ์ของกำลังสอง ในช่วง 0 ถึง 2π ได้ การกระจายฟังก์ชันในรูปของอนุกรมฟูริเยร์จะหาได้จาก
อนุกรมฟูริเยร์ | สัมประสิทธิ์ของอนุกรมฟูริเยร์ |
---|---|
![]() |
![]() |
จาก สูตรของออยเลอร์ (Euler's formula) ![]() ![]() ![]() |
|
![]() |
![]() |
โดยที่ ![]() ![]() ![]() |
[แก้] ตัวอย่าง
พิจารณาฟังก์ชัน สำหรับค่า
และเป็นคาบในช่วงที่เหลือ ตามข้อสมมุติของอนุกรมฟูริเยร์ ดังรูป
สัมประสิทธิ์ของอนุกรมฟูริเยร์สามารถคำนวณหาได้ดังต่อไปนี้ สังเกตว่า cos(nx) เป็นฟังก์ชันคู่ ในขณะที่ f เป็นฟังก์ชันคี่เช่นเดียวกับ sin(nx)
สังเกตว่า a0 และ an มีค่าเท่ากับ 0 เนื่องจาก x และ x cos(nx) เป็นฟังก์ชันคี่ ดังนั้นอนุกรมฟูริเยร์ของ f(x) = x คือ:
สำหรับการประยุกต์ใช้งานอนุกรมฟูริเยร์ ดู ค่าของฟังก์ชันรีมันน์เซตา ที่ s = 2
![]() |
อนุกรมฟูริเยร์ เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น ข้อมูลเกี่ยวกับ อนุกรมฟูริเยร์ ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ |