Vật lý thiên văn
Bách khoa toàn thư mở Wikipedia
Vật lý thiên văn là một phần của ngành thiên văn học có quan hệ với vật lý trong vũ trụ, bao gồm các tính chất vật lý (cường độ ánh sáng, tỉ trọng, nhiệt độ, và các thành phần hóa học) của các thiên thể chẳng hạn như ngôi sao, thiên hà, và interstellar medium, cũng như các ảnh hưởng qua lại của chúng. Công việc nghiên cứu Vật lý vũ trụ học là vật lý thiên văn mang tính lý thuyết trong phạm vi rộng nhất.
Bởi vì ngành vật lý thiên văn là một lĩnh vực mênh mông , nên các nhà vật lý học thiên thể thường áp dụng các ngành khoa học khác trong vật lý, bao gồm cơ khí, điện từ học, cơ học thống kê, nhiệt động lực học, cơ học lượng tử, tính tương đối, vật lý nguyên tử, vật lý hạt nhân, và vật lý nguyên tử, phân tử và quang học. Trong thực nghiệm, ngành nghiên cứu thiên văn hiện đại bao gồm một phần quan trọng dựa trên nền tảng vật lý cơ bản. Tên gọi của ngành học trong các trường đại học ("vật lý thiên văn" hay "thiên văn học") thường liên quan nhiều đến lịch sử của ngành hơn là nội dung nghiên cứu. Vật lý thiên văn được đào tạo trong rất nhiều trường đại học với bằng cử nhân, thạc sĩ, tiến sĩ thông qua các khoa như kỹ thuật hàng không vũ trụ, vật lý hoặc thiên văn học.
Mục lục |
[sửa] Lịch sử
Mặc dù thiên văn học đã có lịch sử lâu đời nhưng vẫn được xét là một ngành riêng biệt với vật lý. Trong quan điểm về thế giới của Aristotle , Trời đất luôn gắn liền với sự hòan hảo , các vật thể trên bầu trời tồn tại như một quả cầu hòan hảo có quỹ đạo tròn hòan hảo ; trong khi dó Trái Đất thuộc về sự không hòan hảo ; 2 quan điểm này không được xem là có liên quan với nhau.
Aristarchus of Samos (c.310-c.250 BC) đầu tiên đề ra sự vận động của các thiên thể được giải thích rằng Trái Đất và tất cả các hành tinh trong Hệ mặt trời đều quay xung quanh Mặt trời . Thuyết nhật tâm của Aristarchus không được chấp nhận trong thế giới Hy Lạp cổ đại trong nhiều thế kỷ , và quan điểm Mặt trời và các hành tinh quay xung quanh Trái đất trở thành cơ bản không thể chối cãi , cho đến khi Nicolaus Copernicus làm sống lại mô hình Nhật tâm trong thế kỷ 16 . Năm 1609 , Galileo Galilei phát hiện ra 4 vệ tinh sáng nhất của sao Mộc ,và ghi nhận quỹ đạo của chúng so với sao Mộc , điều đó mâu thuẫn với giáo lý Địa tâm của Catholic Church vào lúc đó , và thóat khỏi sự trừng phạt bằng cách bảo vệ quan điểm của ông được sinh ra bởi tóan học , không phải từ những triết lý tự nhiên , mặc dù nó thật sự khó hiểu.
Phần lớn các số liệu thiên văn chính xác đựoc quan sát bởi Tycho Brahe đã đặt nền móng cho sự phát triển các học thuyết sau này về vũ trụ. Đầu tiên là các quy tắc dựa trên số liệu thực nghiệm, điển hình là ba định luật của Kepler về sự chuyển động của các hành tinh, đề xứong vào thế kỷ 17. Sau đó, Newton đã tạo một cầu nối giữa các định luật của Kepler và động lực học của Galileo bằng việc cho rằng có sự giống nhau giữa động lực học của các vật thể trên trái đất và động lực học giữa của các hành tinh và mặt trăng. Cơ học thiên thể - sự áp dụng định luật hấp dẫn và các định luật của Newton để giải thích các định luật của Kepler về sự chuyển động của các hành tinh, đã trở thành sự hợp nhất đầu tiên của vật lý và thiên văn học.
Sau khi Isaac Newton công bố quyển Principia, ngành hàng hải đã bắt đầu có những chuyển biến. Bắt đầu vào những năm 1970, thế giới bắt đầu để ý đến việc sử dụng một hệ vĩ độ mới, cũng như dùng những chiếc đồng hồ chuẩn xác. Nhu cầu của ngành hàng hải thời bấy giờ đã đặt ra yêu cầu cho một cuộc chạy đua về các số liệu liệu quan sát thiên văn và phưong tiện ngày càng chính xác hơn, cũng như một nền tảng khoa học mạnh mẽ hơn nữa.
Vào những năm cuối thế kỉ 19, ngừoi ta tìm ra rằng khi phân tích ánh sáng mặt trời, ta sẽ quan sát đựoc một hệ thống các vạch quang phổ ( trong vùng tồn tại rất ít hoặc không có ánh sáng trắng). Thực nghiệm đã cho thấy rằng các khí nóng cũng phát ra quang phổ vạch, điều đặc biệt là mỗi một nguyên tố hóa học chỉ phát ra những vạch quang phổ đặc trưng riêng biệt tưong ứng. Điều này chứng tỏ rằng chúng ta có thể tìm hiểu xem trên mặt trời có các nguyên tố hóa học nào, bằng cách so sánh các vạch quang phổ từ ánh sáng mặt trời với các vạch quang phổ của các nguyên tố hóa học đã có sẵn ở trái đất. Thực vậy, nguyên tố helium đầu tiên đã đựoc tìm thấy từ quang phổ mặt trời, sau đó mới tìm thấy trên trái đất, ngừoi ta đã nhân điều này mà đặt tên cho nó. Trong suốt thể kỷ 20, với sự tiến bộ của quang phổ học (môn học nghiên cứu về các vạch quang phổ), đặc biệt là những kết quả của vật lý lựong tử, đã cho phép chúng ta sự hiểu biết rõ hơn về thiên văn học, cũng như lý giải các số liệu thực nghiệm của nó. [1]
See also:
- Timeline of knowledge about galaxies, clusters of galaxies, and large-scale structure
- Timeline of white dwarfs, neutron stars, and supernovae
- Timeline of black hole physics
- Timeline of gravitational physics and relativity
[sửa] Đối tượng của ngành vật lý thiên văn
Most astrophysical processes cannot be reproduced in laboratories on Earth. However, there is a huge variety of astronomical objects visible all over the electromagnetic spectrum. The study of these objects through passive collection of data is the goal of observational astrophysics.
The equipment and techniques required to study an astrophysical phenomenon can vary widely. Many astrophysical phenomena that are of current interest can only be studied by using very advanced technology and were simply not known until very recently.
The majority of astrophysical observations are made using the electromagnetic spectrum.
- Radio astronomy studies radiation with a wavelength greater than a few millimeters. Radio waves are usually emitted by cold objects, including interstellar gas and dust clouds. The cosmic microwave background radiation is the redshifted light from the Big Bang. Pulsars were first detected at microwave frequencies. The study of these waves requires very large radio telescopes.
- Infrared astronomy studies radiation with a wavelength that is too long to be visible but shorter than radio waves. Infrared observations are usually made with telescopes similar to the usual optical telescopes. Objects colder than stars (such as planets) are normally studied at infrared frequencies.
- Optical astronomy is the oldest kind of astronomy. Telescopes paired with a charge-coupled device or a spectroscope are the most common instruments used. The Earth's atmosphere interferes somewhat with optical observations, so adaptive optics and space telescopes are used to obtain the highest possible image quality. In this range, stars are highly visible, and many chemical spectra can be observed to study the chemical composition of stars, galaxies and nebulae.
- Ultraviolet, X-ray and gamma ray astronomy study very energetic processes such as binary pulsars, black holes, magnetars, and many others. These kinds of radiation do not penetrate the Earth's atmosphere well, so they are studied with space-based telescopes such as RXTE, the Chandra X-ray Observatory and the Compton Gamma Ray Observatory.
Other than electromagnetic radiation, few things may be observed from the Earth that originate from great distances. A few gravitational wave observatories have been constructed, but gravitational waves are extremely difficult to detect. Neutrino observatories have also been built, primarily to study our Sun. Cosmic rays consisting of very high energy particles can be observed hitting the Earth's atmosphere.
Observations can also vary in their time scale. Most optical observations take minutes to hours, so phenomena that change faster than this cannot readily be observed. However, historical data on some objects is available spanning centuries or millennia. On the other hand, radio observations may look at events on a millisecond timescale (millisecond pulsars) or combine years of data (pulsar deceleration studies). The information obtained from these different timescales is very different.
The study of our own Sun has a special place in observational astrophysics. Due to the tremendous distance of all other stars, the Sun can be observed in a kind of detail unparalleled by any other star. Our understanding of our own sun serves as a guide to our understanding of other stars.
The topic of how stars change, or stellar evolution, is often modelled by placing the varieties of star types in their respective positions on the Hertzsprung-Russell diagram, which can be viewed as representing the state of a stellar object, from birth to destruction. The material composition of the astronomical objects can often be examined using:
- Spectroscopy
- Radio astronomy
- Neutrino astronomy (future prospects)
[sửa] Theoretical astrophysics
Theoretical astrophysics is the discipline that seeks to explain the phenomena observed by astronomers in physical terms with a theoretic approach. With this purpose, theoretical astrophysicists create and evaluate models and physical theories to reproduce and predict the observations. In most cases, trying to figure out the implications of physical models is not easy and takes a lot of time and effort.
Theoretical astrophysicists use a wide variety of tools which include analytical models (for example, polytropes to approximate the behaviors of a star) and computational numerical simulations. Each has some advantages. Analytical models of a process are generally better for giving insight into the heart of what is going on. Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen.[2][3]
Theorists in astrophysics endeavor to create theoretical models and figure out the observational consequences of those models. This helps allow observers to look for data that can refute a model or help in choosing between several alternate or conflicting models.
Theorists also try to generate or modify models to take into account new data. In the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model.
Within the astronomical community, theorists are widely caricatured as being mechanically inept and unlucky for observational efforts. Having a theorist at an observatory is considered likely to jinx an observation run and cause machines to break inexplicably or to have the sky cloud over.
Topics studied by theoretical astrophysicists include: stellar dynamics and evolution; galaxy formation; large-scale structure of matter in the Universe; origin of cosmic rays; general relativity and physical cosmology, including string cosmology and astroparticle physics. Astrophysical relativity serves as a tool to gauge the properties of large scale structures for which gravitation plays a significant role in physical phenomena investigated and serves as the basis for black hole (astro)physics and the study of gravitational waves.
Some widely-accepted and studied theories and models in astrophysics, now included in the Lambda-CDM model are the Big Bang, Cosmic inflation, dark matter, and fundamental theories of physics.
A few examples of this process:
Physical process | Experimental tool | Theoretical model | Explains/predicts |
Gravitation | Radio telescopes | Self-gravitating system | Emergence of a star system |
Nuclear fusion | Spectroscopy | Stellar evolution | How the stars shine and how metals formed |
The Big Bang | Hubble Space Telescope, COBE | Expanding universe | Age of the Universe |
Quantum fluctuations | Cosmic inflation | Flatness problem | |
Gravitational collapse | X-ray astronomy | General relativity | Black holes at the center of Andromeda galaxy |
CNO cycle in stars |
Dark matter and dark energy are the current leading topics in astrophysics, as their discovery and controversy originated during the study of the galaxies.
[sửa] See also
- Astronomical observatories
- Important publications in astrophysics
- List of astrophysicists
- Nucleosynthesis
- Particle accelerator
- Astrodynamics
[sửa] Tham khảo
- ▲ Frontiers of Astrophysics: Workshop Summary, H. Falcke, P. L. Biermann
- ▲ H. Roth, A Slowly Contracting or Expanding Fluid Sphere and its Stability, Phys. Rev. (39, p;525–529, 1932)
- ▲ A.S. Eddington, Internal Constitution of the Stars
[sửa] Các liên kết ngoài
- Prof. Sir Harry Kroto, NL, Astrophysical Chemistry Lecture Series. 8 Freeview Lectures provided by the Vega Science Trust.
- 'The Mathematician Who Can't Add Up' Cosmologist Emma King Freeview 'Snapshots video' by the Vega Science Trust.
- Stanford Linear Accelerator Center, Stanford, California
- Search for astrophysics
- overinflation.org Astrophysics and Cosmology News