Benutzer:Melancholie/monobook.js/checksum

Us der alemannische Wikipedia, der freie Dialäkt-Enzyklopedy

< Benutzer:Melancholie | monobook.js

/*

* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
* in FIPS 180-1
* Version 2.2-alpha Copyright Paul Johnston 2000 - 2002.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
*/

/*

* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/

var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */

/*

* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/

function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); } function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); } function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); } function hex_hmac_sha1(k, d)

 { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }

function b64_hmac_sha1(k, d)

 { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }

function any_hmac_sha1(k, d, e)

 { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }

/*

* Perform a simple self-test to see if the VM is working
*/

function sha1_vm_test() {

 return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d";

}

/*

* Calculate the SHA1 of a raw string
*/

function rstr_sha1(s) {

 return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));

}

/*

* Calculate the HMAC-SHA1 of a key and some data (raw strings)
*/

function rstr_hmac_sha1(key, data) {

 var bkey = rstr2binb(key);
 if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
 var ipad = Array(16), opad = Array(16);
 for(var i = 0; i < 16; i++)
 {
   ipad[i] = bkey[i] ^ 0x36363636;
   opad[i] = bkey[i] ^ 0x5C5C5C5C;
 }
 var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
 return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));

}

/*

* Convert a raw string to a hex string
*/

function rstr2hex(input) {

 var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
 var output = "";
 var x;
 for(var i = 0; i < input.length; i++)
 {
   x = input.charCodeAt(i);
   output += hex_tab.charAt((x >>> 4) & 0x0F)
          +  hex_tab.charAt( x        & 0x0F);
 }
 return output;

}

/*

* Convert a raw string to a base-64 string
*/

function rstr2b64(input) {

 var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 var output = "";
 var len = input.length;
 for(var i = 0; i < len; i += 3)
 {
   var triplet = (input.charCodeAt(i) << 16)
               | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
               | (i + 2 < len ? input.charCodeAt(i+2)      : 0);
   for(var j = 0; j < 4; j++)
   {
     if(i * 8 + j * 6 > input.length * 8) output += b64pad;
     else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
   }
 }
 return output;

}

/*

* Convert a raw string to an arbitrary string encoding
*/

function rstr2any(input, encoding) {

 var divisor = encoding.length;
 var remainders = Array();
 var i, q, x, quotient;
 /* Convert to an array of 16-bit big-endian values, forming the dividend */
 var dividend = Array(Math.ceil(input.length / 2));
 for(i = 0; i < dividend.length; i++)
 {
   dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
 }
 /*
  * Repeatedly perform a long division. The binary array forms the dividend,
  * the length of the encoding is the divisor. Once computed, the quotient
  * forms the dividend for the next step. We stop when the dividend is zero.
  * All remainders are stored for later use.
  */
 while(dividend.length > 0)
 {
   quotient = Array();
   x = 0;
   for(i = 0; i < dividend.length; i++)
   {
     x = (x << 16) + dividend[i];
     q = Math.floor(x / divisor);
     x -= q * divisor;
     if(quotient.length > 0 || q > 0)
       quotient[quotient.length] = q;
   }
   remainders[remainders.length] = x;
   dividend = quotient;
 }
 /* Convert the remainders to the output string */
 var output = "";
 for(i = remainders.length - 1; i >= 0; i--)
   output += encoding.charAt(remainders[i]);
 /* Append leading zero equivalents */
 var full_length = Math.ceil(input.length * 8 /
                                   (Math.log(encoding.length) / Math.log(2)))
 for(i = output.length; i < full_length; i++)
   output = encoding[0] + output;
 return output;

}

/*

* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/

function str2rstr_utf8(input) {

 var output = "";
 var i = -1;
 var x, y;
 while(++i < input.length)
 {
   /* Decode utf-16 surrogate pairs */
   x = input.charCodeAt(i);
   y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
   if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
   {
     x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
     i++;
   }
   /* Encode output as utf-8 */
   if(x <= 0x7F)
     output += String.fromCharCode(x);
   else if(x <= 0x7FF)
     output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
                                   0x80 | ( x         & 0x3F));
   else if(x <= 0xFFFF)
     output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
                                   0x80 | ((x >>> 6 ) & 0x3F),
                                   0x80 | ( x         & 0x3F));
   else if(x <= 0x1FFFFF)
     output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
                                   0x80 | ((x >>> 12) & 0x3F),
                                   0x80 | ((x >>> 6 ) & 0x3F),
                                   0x80 | ( x         & 0x3F));
 }
 return output;

}

/*

* Encode a string as utf-16
*/

function str2rstr_utf16le(input) {

 var output = "";
 for(var i = 0; i < input.length; i++)
   output += String.fromCharCode( input.charCodeAt(i)        & 0xFF,
                                 (input.charCodeAt(i) >>> 8) & 0xFF);
 return output;

}

function str2rstr_utf16be(input) {

 var output = "";
 for(var i = 0; i < input.length; i++)
   output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
                                  input.charCodeAt(i)        & 0xFF);
 return output;

}

/*

* Convert a raw string to an array of big-endian words
* Characters >255 have their high-byte silently ignored.
*/

function rstr2binb(input) {

 var output = Array(input.length >> 2);
 for(var i = 0; i < output.length; i++)
   output[i] = 0;
 for(var i = 0; i < input.length * 8; i += 8)
   output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
 return output;

}

/*

* Convert an array of little-endian words to a string
*/

function binb2rstr(input) {

 var output = "";
 for(var i = 0; i < input.length * 32; i += 8)
   output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
 return output;

}

/*

* Calculate the SHA-1 of an array of big-endian words, and a bit length
*/

function binb_sha1(x, len) {

 /* append padding */
 x[len >> 5] |= 0x80 << (24 - len % 32);
 x[((len + 64 >> 9) << 4) + 15] = len;
 var w = Array(80);
 var a =  1732584193;
 var b = -271733879;
 var c = -1732584194;
 var d =  271733878;
 var e = -1009589776;
 for(var i = 0; i < x.length; i += 16)
 {
   var olda = a;
   var oldb = b;
   var oldc = c;
   var oldd = d;
   var olde = e;
   for(var j = 0; j < 80; j++)
   {
     if(j < 16) w[j] = x[i + j];
     else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
     var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
                      safe_add(safe_add(e, w[j]), sha1_kt(j)));
     e = d;
     d = c;
     c = bit_rol(b, 30);
     b = a;
     a = t;
   }
   a = safe_add(a, olda);
   b = safe_add(b, oldb);
   c = safe_add(c, oldc);
   d = safe_add(d, oldd);
   e = safe_add(e, olde);
 }
 return Array(a, b, c, d, e);

}

/*

* Perform the appropriate triplet combination function for the current
* iteration
*/

function sha1_ft(t, b, c, d) {

 if(t < 20) return (b & c) | ((~b) & d);
 if(t < 40) return b ^ c ^ d;
 if(t < 60) return (b & c) | (b & d) | (c & d);
 return b ^ c ^ d;

}

/*

* Determine the appropriate additive constant for the current iteration
*/

function sha1_kt(t) {

 return (t < 20) ?  1518500249 : (t < 40) ?  1859775393 :
        (t < 60) ? -1894007588 : -899497514;

}

/*

* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/

function safe_add(x, y) {

 var lsw = (x & 0xFFFF) + (y & 0xFFFF);
 var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
 return (msw << 16) | (lsw & 0xFFFF);

}

/*

* Bitwise rotate a 32-bit number to the left.
*/

function bit_rol(num, cnt) {

 return (num << cnt) | (num >>> (32 - cnt));

}