Càlcul de la Pasqua

De Viquipèdia

Data en què cau el Diumenge de Pasqua (2000-2020)
Any Església
Catòlica
i Protestant
Església
Ortodoxa
2000 23 d'abril 30 d'abril
2001 15 d'abril
2002 31 de març 5 de maig
2003 20 d'abril 27 d'abril
2004 11 d'abril
2005 27 de març 1 de maig
2006 16 d'abril 23 d'abril
2007 8 d'abril
2008 23 de març 27 d'abril
2009 12 d'abril 19 d'abril
2010 4 d'abril
2011 24 d'abril
2012 8 d'abril 15 d'abril
2013 31 de març 5 de maig
2014 20 d'abril
2015 5 d'abril 12 d'abril
2016 27 de març 1 de maig
2017 16 d'abril
2018 1 d'abril 8 d'abril
2019 21 d'abril 28 d'abril
2020 12 d'abril 19 d'abril
  • Es considera diumenge de Pasqua el diumenge següent al catorzè dia d'una llunació que s'esdevingui (el dia) a partir del 21 de març, inclòs
  • Es considera diumenge de Pasqua el diumenge següent a la primera lluna plena de primavera (o sigui, que caigui a partir del 21 de març, inclòs)
  • Es considera diumenge de Pasqua el diumenge següent a la Pasqua jueva (que se celebra la primera lluna plena de primavera, o sigui, que caigui a partir del 21 de març, inclòs)


[edita] Algorisme de Gauss

Per a esbrinar la Pasqua d'un any, procedirem de la següent manera:

Dividim l'any el qual vulguem saber la Pasqua per 19 i a la resta l'anomenem "a". Dividim el mateix número per 4 i anomenem a la resta "b". Tornem a dividir el mateix número per 7 i anomenen a la resta "c".

Dividim 19*a + m per 30 i anomenem "d" a la resta. Dividim 2*b + 4*c + 6*d + n per 7 i anomenem a la resta "e".

El valor de "m" i "n" serà el següent: Si l'any proposat és anterior a la reforma gregoriana, és a dir, abans de 1583, m=15 i n=6. Però si l'any és posterior, observeu la taula següent:

Des de 1582 fins a 1699 m=22 i n=2 Des de 1699 fins a 1799 m=23 i n=3 Des de 1799 fins a 1899 m=23 i n=4 Des de 1899 fins a 2099 m=24 i n=5

Un cop sabut això, tenim que la Pasqua serà:

(22 + d + e) de març (Agafarem aquesta fórmula sempre que el total no sobrepassi 31) o bé: (d + e - 9) d'abril (Agafarem aquesta fórmula sempre que el total sigui positiu)


Com a exemple procedim a escatir la Pasqua del any 2005:

Resta de 2005 / 19 = 10 Resta de 2005 / 4 = 1 Resta de 2005 / 7 = 3

Dividim 19*10 + 24 entre 30 i tenim el número 4 de resta. Dividim 2*1 + 4*3 + 6*4 + 5 entre 7 i tenim una resta de 1.

Així doncs 22 + 4 + 1 = 27 de març, diumenge de Pasqua. A partir d'aquí, podrem determinar totes les altres festes mòbils del calendari.