Nombre ordinal

De Viquipèdia

Icono de copyedit

Nota: L'article necessita algunes millores en el contingut o l'estil:


Sistema de nombres en matemàtiques.
Nombres Elementals

Naturals \mathbb{N} {0,1,2,3...}
Enters \mathbb{Z} {...-2,-1,0,+1,+2,...}
Racionals \mathbb{Q}{...-1/2..0..1/2..1...}
Reals \mathbb{R} {Q U I U Tr} Complexos \mathbb{C}

Infinit

Extensions dels
nombres complexos

Bicomplexos
Hipercomplexos
Quaternions \mathbb{H}
Octonions \mathbb{O}
Setenions
Super-reals
Hiper-reals
Sub-reals

Nombres Especials

Nominals
Ordinals {1o,2o,...} (d'ordre)
Cardinals {\aleph_1, \aleph_2, \aleph_3, ...}

Altres nombres importants

Seqüència d'enters
Constants matemàtiques
Llistat de nombres
Nombres grans

Sistemes de numeració
  • Àrab
  • Armeni
  • Àtica (grega)
  • Babilònica
  • Xinesa
  • Ciríl·lica
  • Egípcia
  • Etrusca
  • Grega
  • Hebrea
  • Índia
  • Jònica (grega)
  • Japonesa
  • Jémer
  • Maia
  • Romana
  • Tailandesa

  • Numerals en base constant:
  • Binari (2)
  • Quinari (5)
  • Octal (8)
  • Decimal (10)
  • Duodecimal (12)
  • Hexadecimal (16)
  • Vigesimal (20)
  • Sexagesimal (60)


Els nombres ordinals, o senzillament ordinals, són nombres usats per a denotar la posició a una successió ordenada: primer, segon, tercer, quart, etc... El matemàtic Georg Cantor va mostrar el 1897 com estendre aquest concepte més enllà dels nombres naturals fins a l'infinit i com fer aritmètica amb aquests ordinals transfinits .

Hom pot (i és usual de fer) definir el nombre natural n com el conjunt de tots els nombres naturals menors:

0 = {} (conjunt buit) 
1 = {0} = { { } }
2 = {0,1} = { {}, { {} } }
3 = {0,1,2} = {{}, { {} }, { {}, { {} } }}
4 = {0,1,2,3} = { {} , { { } }, { {}, { {} } } , {{}, { {} }, { {}, { {} } }} }
etc.

Vist d'aquesta manera, cada nombre natural és un conjunt ben ordenat : el conjunt 4 per exemple té elements 0,1,2,3, que són ordenats naturalment com 0<1<2<3 (ben ordenats). Un nombre natural és menor que un altre si i només si és element de l'altre.