Progressió geomètrica
De Viquipèdia
En matemàtiques una progressió geomètrica és una successió de nombres que compleix que el quocient entre qualsevol dos membres successius de la successió és una constant anomenada raó comuna o factor de progressió de la successió.
A vegades, es pot utilitzar com a concepte abstracte, normalment es fa servir com a contrapunt a progressió aritmètica, indicant la geomètrica un creixement ràpid i l'aritmètica un de no tant ràpid.
Una successió geomètrica es pot escriure com;
On r ≠ 0 és el factor de progressió i a és el nombre inicial.
Tenim:
- El primer valor és a.
- El segon és el primer*r
- El tercer és el segon*r
- ...
[edita] Exemples
Una successió amb r = 2 i a= 1 és
-
- 1, 2, 4, 8, 16, 32, ....
Una successió amb r = 2/3 i a= 729 és
-
- 729 (1, 2/3, 4/9, 8/27, 16/81, 32/243, 64/729, ....) = 729, 486, 324, 216, 144, 96, 64, ....
Una successió amb r = −1 i a= 3 és
-
- 3 (1, −1, 1, −1, 1, −1, 1, −1, 1, −1, ....) = 3, −3, 3, −3, 3, −3, 3, −3, 3, −3, ....
[edita] Sèries Geomètriques
Una sèrie geomètrica és el sumatori dels nombres en una progressió geomètrica:
La sèrie geomètrica de raó 1/4 d'Arquimedes equival a: