Ortogonal
Fra Wikipedia, den frie encyklopædi
I matematikken siger man, at to vektorer er ortogonale, hvis deres indre produkt er nul. I planet R² og rummet R³ er det indre produkt typisk underforstået at være prikproduktet, så her kaldes to vektorer v og w ortogonale, hvis v • w = 0. På grund af egenskaberne ved prikproduktet svarer dette til, at vektorerne står vinkelret på hinanden. Derfor hører man tit ordet vinkelret brugt som et synonym for ortogonal; også mht. andre indre produkter, og også brugt om vektorer, der ikke er de traditionelle talpar.
Hvis B = {v1, v2, ..., vn} er en basis for et euklidiske vektorrum V, kaldes B en ortogonalbasis, hvis alle vektorene i B er indbyrdes ortogonale. Dvs. 〈vi, vj〉 = 0 for i ≠ j.