هندسه‌ نااقلیدسی

از ویکی‌پدیا، دانشنامهٔ آزاد.

هندسه‌ نااقلیدسی هندسه‌هایی که اقلیدسی نیستند از مطالعهٔ عمیق‌تر موضوع توازی در هندسهٔ اقلیدسی پیدا شده‌اند. دو نیم‌خط موازی عمود بر پاره خط PQ را در نمودار شماره 1 در نظر بگیرد. در هندسهٔ اقلیدسی فاصلهٔ (عمودی) بین دو نیم‌خط هنگامی که به سمت راست حرکت می‌کنیم فاصلهٔ p تا Q باقی می‌مانند؛ ولی در اوایل سدهٔ نوزدهم دو هندسه‌ی دیگر پیشنهاد شد. یکی هندسهٔ هذلولوی (از کلمهٔ یونانی هیپربالئین به معنی "افزایش یافتن") که در آن فاصلهٔ میان نیم‌خط‌ها افزایش می‌یابد و دیگری هندسهٔ بیضوی (elliptic geometry) (از کلمهٔ یونانی ایپلن "کوتاه شدن") که در آن فاصله رفته رفته کم می‌شود و سرانجام نیم‌خط‌ها هم‌دیگر را می‌برند. این هندسهٔ نااقلیدسی بعدها توسط ک.ف. گاوس و گ. ف. ب. ریمان در قالب هندسهٔ کلی‌تری بسط داده شدند. (همین هندسهٔ کلی‌تر است که در نگرهٔ نسبیت عام اینشتاین مورد استفاده قرار گرفته است.)

[ویرایش] جستارهای وابسته

[ویرایش] منبع

  1. گرینبرگ، ماروین جی،هندسه‌های اقلیدسی و نااقلیدسی، ترجمه‌ی: م. ه‍. شفیعیها، مرکز نشر دانشگاهی.