무한 원숭이 정리

위키백과 ― 우리 모두의 백과사전.

보렐-칸텔리 보조정리의 두번째 정리에 따르면, 충분한 시간만 있다면, 제멋대로 타자를 치는 침팬지가 윌리엄 셰익스피어의 희곡 전체를 칠 가능성이 없지는 않다.
실제 크기로
보렐-칸텔리 보조정리의 두번째 정리에 따르면, 충분한 시간만 있다면, 제멋대로 타자를 치는 침팬지윌리엄 셰익스피어희곡 전체를 칠 가능성이 없지는 않다.

무한 원숭이 정리는 무한성에 기초한 정리로, 타자기 앞에 앉아서 마음대로 쳐대는 원숭이가 프랑스 국립 박물관의 모든 책을 언젠가는 쳐 낼 가능성이 거의 확실하다는 정리이다. ‘거의 확실하다(almost surely)’라는 말은 수학적으로 확률이 거의 1이라는 것을 의미한다. 위의 정리는 영어 사용자들이 윌리엄 셰익스피어의 희곡 전체를 칠 수도 있다는 내용으로 각색하였다.

이를 처음으로 생각한 사람은 프랑스 수학자 에밀 보렐(Émile Borel)로, 1913년 논문인 〈Mécanique Statistique et Irréversibilité〉에 실렸다. 여기서 ‘원숭이’란 실제의 원숭이를 뜻하는 것은 아니다. 대신, 아주 긴 임의의 문자로 이루어진 문자열을 만들어 내는 방식을 좀 더 상상하기 쉽도록 만들어 주는 도구이다. 보렐은 백만 마리의 원숭이가 매일 10시간씩 타자를 친다고 해서, 거대한 도서관에 있는 모든 책을 정확히 만들어 낼 수 있을 것 같지는 않다고 언급했다. 하지만 그렇다고 해서, 이른바 ‘확률’이라는 법칙이 깨어지지는 않으리라고 반론하였다(즉 발생할 수도 있다는 것이다.). 보렐이 원숭이라는 것을 언급한 이유는 극히 일어나기 힘든 사건을 상상하게 하기 위한 도구였다.

1970년 이후로, 위의 설명 대신 무한이라는 개념을 혼용한 설명이 사용되었다. 즉 무한 원숭이가 무한 시간 타자를 친다면 주어진 문서를 쳐 낸다는 것이다. 하지만, 원숭이 수와 시간의 두 개 모두 무한을 가정하는 것은 별 효용성이 없다. 불사의 한 원숭이가 무한히 타자를 친다면 언젠가는 주어진 문서를 만들 수 있을 것이며, 또한 무한한 수의 원숭이가 단 한 번씩만 타자를 친다면, 그 순간 모든 문서가 만들어질 것이기 때문이다. 사실 더 엄밀히 말한다면, 두 경우 모두 모든 종류의 문서가 만들어질 가능성이 ‘거의 확실하다’고 하는 것이 옳다(무한 원숭이가 모두 똑같은 문자만 누른다면, 결과는 한 문자로만 이루어진 문자열일 것이기 때문이다).

[편집] 같이 읽기