Celoštevilsko zaporedje

Iz Wikipedije, proste enciklopedije

Celoštevílsko zaporédje je v matematiki zaporedje, katerega členi so cela števila. Celoštevilsko zaporedje lahko navedemo eksplicitno, da podamo enačbo za n-ti člen, ali implicitno z zvezo med členi zaporedja. Zaporedje 0, 1, 1, 2, 3, 5, 8, 13, ... (Fibonaccijevo zaporedje) tvorimo tako, da začnemo s številoma 0 in 1, naslednje člene pa dobimo, če seštevamo dva predhodna člena med seboj. Zaporedje 0, 3, 8, 15, 24, 35, 48, 63, ... tvorimo po enačbi n2 − 1 za n-ti člen.

Veliko celoštevilskih zaporedij ima svoja imena:

Celoštevilsko zaporedje je izračunljivo zaporedje, če obstaja algoritem, ki za dani n izračuna an za vse n > 0. Celoštevilsko zaporedje je določljivo, če obstaja izjava P(x), ki je resnična za zaporedje x in neresnična za vsa druga celoštevilska zaporedja. Množici izračunljivih in določljivih celoštevilskih zaporedij sta števni, kjer izračunljiva zaporedja tvorijo pravo podmnožico določljivih zaporedij. Množica vseh celoštevilskih zaporedij je neštevna in zato so skoraj vsa celoštevilska zaporedja neizračunljiva in nedoločljiva.

[uredi] Glej tudi

  • Spletna enciklopedija celoštevilskih zaporedij (OEIS)

[uredi] Zunanje povezave