Billede:FocalLength.png
Fra Wikipedia, den frie encyklopædi
Denne fil er fra Wikimedia Commons, en samling af åbent indhold som Wikimedia Foundation er vært for. Beskrivelsen fra siden med beskrivelse af billedet er vist nedenfor. |
[edit] Description
Demonstrating the concept of focal length for a convex, spherical lens: Light beams entering from the left gets refracted twice before focusing at approximately distance f to the right of the lens.
[edit] Licensing
|
[edit] POV-Ray code
This image was rendered using POV-Ray for Windows version 3.6 and the scene description code below. Note that the POV-Ray installation needs to have access to the font file "timesbi.ttf" for rendering the bold italic "f" in the image.
If rendered as shown, this code will produce the above image, but by replacing the #switch (1) in the 13th line by a #switch (2), you get the image ShortFocalLength.png.
/* ================================================ Demonstrating ocal length for a convex lens ------------------------------------------------ Created by Søren Peo Pedersen - see my user page at http://da.wikipedia.org/wiki/Bruger:Peo ================================================ */ #declare IndexOfRefraction=1.66; // Simulated index of refraction #declare LineWidth=0.02; // Width of light beam lines #switch (1) // edit to 1 for long, 2 for short focal length #case (1) #declare LR=10; #declare VisF=1; #break #case (2) #declare LR=4.4; #declare VisF=0; #break #end #declare FL=1/(IndexOfRefraction-1)/(2/LR); #declare LS=sqrt(LR*LR-5.29)-.05; #macro DashedLine(L) // White dashed line for annotations union { #local cnt=0; #while (cnt<L) box {<-.03,cnt/2,-.02>,<.03,cnt/2+.25,-.021>} #local cnt=cnt+1; #end } #end #macro Beam(Shift) // Renders one of the nine beams #local pX1=LS-sqrt(LR*LR-Shift*Shift); #local VI1=asin(Shift/LR); #local VO1=-asin(Shift/LR/IndexOfRefraction); #local LLa=-tan(VI1+VO1); #local LLb=(Shift-LLa*pX1); #local ALa=1+LLa*LLa; #local ALb=(2*LS+2*LLa*LLb); #local ALc=LS*LS+LLb*LLb-LR*LR; #local ALD=ALb*ALb-4*ALa*ALc; #local pX2=(-ALb+sqrt(ALD))/(2*ALa); #local pY2=sqrt(LR*LR-(pX2+LS)*(pX2+LS))*select(LLa,1,1,-1); #local Vud=atan(pY2/(pX2+LS)); #local VI2=Vud+VO1+VI1; #local VO2=-asin(sin(VI2)*IndexOfRefraction); #local DIR=Vud+VO2; #local pX3=pX2+50*cos(DIR); #local pY3=pY2+50*sin(DIR); sphere_sweep { linear_spline,4, <-50,Shift,0>,LineWidth <pX1,Shift,0>,LineWidth <pX2,pY2,0>,LineWidth <pX3,pY3,0>,LineWidth pigment {color rgb<1,.95,.8>} finish {ambient 1 diffuse 0} no_shadow no_reflection translate <0,0,-LineWidth> scale <1,1,.5> } #end #if (VisF != 0) // Include annotation of "f" length in image? union { #object {DashedLine(11) translate <0,-2.8,0>} #object {DashedLine( 7) translate <FL-pi/LR,-2.8,0>} text {ttf "timesbi.ttf" "f",.1,0 translate <(FL-pi/LR)/2-.3,-3,0> } triangle {<0,-2.7,0>,<.5,-2.5,0>,<.5,-2.9,0>} box {<.5,-2.66,.001>,<(FL-pi/LR)/2-.3,-2.74,0>} triangle {<FL-pi/LR,-2.7,0>,<FL-.5-pi/LR,-2.5,0>,<FL-.5-pi/LR,-2.9,0>} box {<FL-.5-pi/LR,-2.66,.001>,<(FL-pi/LR)/2+.3,-2.74,0>} pigment {color rgb 1} finish {ambient 1 diffuse 0} } #end intersection { // The lens itself sphere {<-LS,0,0>,LR} sphere {< LS,0,0>,LR} cylinder {<-8,0,0>,<8,0,0>,2.3} plane {<0,0,-1>,0} pigment {color rgbt <.8,1,.9,.7>} finish {phong 1 reflection .1 ambient .5} interior {ior IndexOfRefraction} } #object {Beam( 2.0)} // Beams: The number #object {Beam( 1.5)} // in parenthesis are #object {Beam( 1.0)} // the Y coordinates #object {Beam( 0.5)} // for each beam of #object {Beam( 0)} // light coming in #object {Beam(-0.5)} // from the left #object {Beam(-1.0)} #object {Beam(-1.5)} #object {Beam(-2.0)} camera { location <FL/2,0,-500> look_at <FL/2,0,0> angle 1 } light_source {<100,100,-100> color rgb 1}
Billedehenvisninger
De følgende sider henviser til dette billede: