Grupė (algebra)

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.

Grupės - paprasčiausia algebrinė struktūra, aibė apibrėžiama vienintele binarine operacija (vidinės kompozicijos dėsniu), tenkinančia tam tikras aksiomas. Grupes ir jų savybes nagrinėja algebros mokslo šaka grupių teorija.

Grupės apibrėžimą tenkina dauguma nagrinėtų matematinių struktūrų. Pavyzdžiui, grupės sudėties atžvilgiu yra sveikųjų, racionaliųjų, realiųjų ir kompleksinių skaičių aibės, grupės daugybos atžvilgiu yra racionalieji skaičiai (be 0), ralieji ir kompleksiniai skaičiai.

Grupės plačiai naudojamos matematikoje, kituose tiksliuosiuose moksluose, inžinerijoje. Pavyzdžiui, grupės naudojamos tiriant reliatyvumą, kvantinę mechaniką, dalelių fiziką, taip pat grupėmis išreikštos geometrinės transformacijos naudojamos chemijoje, kompiuterinėje grafikoje.

[taisyti] Savybės

Elementų aibė G vadinama grupe jai apibrėžto aibės elementų kompozicijos dėsnio * atžvilgiu, jei tenkina šias savybes:

  • Dėsnis * yra asociatyvus, t.y. (g1 * g2) * g3 = g1 * (g2 * g3), bet kokiems grupės G elementams g1,g2,g3
  • Egzistuoja neutralus elementas 1 (vadinamas grupės vienetu), su kuriuo teisinga lygybė 1 * g = g * 1 = g
  • Kiekvienam elementui egzistuoja simetrinis elementas kompozicijos dėsnio atžvilgiu, t.y. g * g − 1 = g − 1 * g = 1 (g - bet kuris grupės elementas, g − 1 - simetrinis elementas iš tos pačios grupės.

[taisyti] Pogrupiai

Grupės pogrupiu vadinami tokie grupės G poaibiai H, kurie tenkina savybes:

  • bet kurių dviejų poaibio H elementų sandauga priklauso H
  • kiekvienam poaibio H elementui atvirkštinis elementas priklauso H

Kiekvienas šias savybes tenkinantis pogrupis taip pat yra grupė.

Pavyzdžiui, racionalių skaičių aibė yra grupė sudėties atžvilgiu, o sveikųjų skaičių aibė yra šios grupės pogrupis.

Kitomis kalbomis