USB

From Wikipedia

Penyambung USB jenis A
Besarkan
Penyambung USB jenis A
Penyambung USB jenis B, mini and saiz penuh, pandangan sisi dan depan, berbanding dengan 5¢ U.S.
Besarkan
Penyambung USB jenis B, mini and saiz penuh, pandangan sisi dan depan, berbanding dengan 5¢ U.S.
Imej:LOGO USB.png
Logo "trident" USB 2.0

Bas Bersiri Sejagat (USB) memberikan piawai bas bersiri untuk peranti penyambung, biasanya untuk komputer peribadi dan Apple Macintosh, dan semakin juga untuk konsol permainan video seperti Microsoft Xbox 360, Nintendo Wii, Sony PlayStation 2, dan PDA, serta untuk perkakas seperti televisyen dan kelengkapan stereo rumah. Pelaksanaan USB berdasarkan spektrum radio dikenali sebagai USB Wayarles atau WUSB.

Versi terbaru (hingga Januari 2005) USB adalah versi 2.0. Perbezaan paling ketara antara versi baru dan lama dalah kepantasan pemindahan data yang jauh meningkat.


Jadual isi kandungan

[Sunting] Pengenalan

Sistem USB mempunyai reka bentuk asimetri, mengandungi pengawal hos dan berbilang peranti disambung menurut bentuk pohon dengan menggunakan peranti hab khas. Terdapat had lima aras cabang hub bagi setiap pengawal. Sehingga 127 peranti boleh disambungkan kepada pengawal hos tunggal, tetapi peranti hab mesti turut diambil kira. Komputer moden kemungkinannya mempunyai beberapa pengawal hos dengan itu jumlah peranti berguna yang disambung jauh lebih rendah berbanding dari apa yang boleh disambungkan kepada pengawal tunggal. Pemutus (terminator) tidak diperlukan untuk bas USB, sebagaimana yang diperlukan bagi SPI-SCSI dan beberapa yang lain.





The design of USB aimed to remove the need for adding separate expansion cards into the computer's ISA or PCI bus, and improve plug-and-play capabilities by allowing devices to be hot swapped or added to the system without rebooting the computer. When the new device first plugs in, the host enumerates it and loads the device driver necessary to run it.

USB can connect peripherals such as mice, keyboards, gamepads and joysticks, scanners, digital cameras, printers, hard disks, and networking components. For multimedia devices such as scanners and digital cameras, USB has become the standard connection method. For printers, USB has also grown in popularity and started displacing parallel ports because USB makes it simple to add more than one printer to a computer. As of 2004 there were about 1 billion USB devices in the world. As of 2005, the only large classes of peripherals that cannot use USB (because they need a higher data rate than USB can provide) are displays and monitors, and high-quality digital video components.

[Sunting] Piawaian

Rekabentuk USB dipiawaikan oleh Forum Pelaksana USB (USB-IF), sebuah badan piawaian industri yang menggabungkan syarikat-syarikat ternama dari industri pengkomputeran dan elektronik. Antara ahlinya termasuk Apple Computer, Hewlett-Packard, NEC, Microsoft, Intel, dan Agere.

Sehingga Januari 2005, spesifikasi USB adalah pada versi 2.0. Hewlett-Packard, Intel, Lucent, Microsoft, NEC dan Philips bergabung tenaga dalam merintis inisiatif untuk membangunkan spesifikasi yang lebih baik dari versi 1.1 dari sudut kadar pemindahan data yang lebih pantas untuk memenuhi permintaan kelajuan pemindahan data teknologi yang sedang membangun. Spesifikasi USB 2.0 telah dilancarkan pada April 2000 dan telah dipiawaikan oleh USB-IF pada akhir 2001. Pelancaran ketara sebelumnya adalah seperti spesifikasi 0.9, 1.0, dan 1.1. Setiap spesifikasi terbaru yang telah dipiawaikan berikut dapat digunakan pada spesifikasi versi yang terdahulu.

Terdapat juga plug dan penerima USB yang lebih kecil yang dipanggil Mini-A dan Mini-B, yang mana dijelaskan sebagai Tambahan kepada spesifikasi USB 2.0O yang sedia ada. Spesifikasi tersebut adalah semakan kepada versi 1.0a.

[Sunting] Butir teknik

Imej:PCB mounting female USB A and B connectors.jpg
PCB mounting female USB connectors

USB connects several devices to a host controller through a chain of hubs. In USB terminology devices are referred to as functions, because in theory what we know as a device may actually host several functions, such as a router that is a Secure Digital Card reader at the same time. The hubs are special purpose devices that are not officially considered functions. There always exists one hub known as the root hub, which is attached directly to the host controller.

These devices/functions (and hubs) have associated pipes (logical channels) which are connections from the host controller to a logical entity on the device named an endpoint. The pipes are synonymous to byte streams such as in the pipelines of Unix, however in USB lingo the term endpoint is (sloppily) used as a synonym for the entire pipe, even in the standard documentation.

These endpoints (and their respective pipes) are numbered 0-15 in each direction, so a device/function can have up to 32 active pipes, 16 inward and 16 outward. (The OUT direction shall be interpreted out of the host controller and the IN direction is into the host controller.) Endpoint 0 is however reserved for the bus management in both directions and thus takes up two of the 32 endpoints. In these pipes, data is transferred in packets of varying length. Each pipe has a maximum packet length, typically 2n bytes, so a USB packet will often contain something on the order of 8, 16, 32, 64, 128, 256, 512 or 1024 bytes.

Each endpoint can transfer data in one direction only, either into or out of the device/function, so each pipe is uni-directional. All USB devices have at least two such pipes/endpoints: namely endpoint 0 which is used to control the device on the bus. There is always an inward and an outward pipe numbered 0 on each device. The pipes are also divided into four different categories by way of their transfer type:

  • control transfers - typically used for short, simple commands to the device, and a status response, used e.g. by the bus control pipe number 0
  • isochronous transfers - at some guaranteed speed (often but not necessarily as fast as possible) but with possible data loss, e.g. realtime audio or video
  • interrupt transfers - devices that need guaranteed quick responses (bounded latency), e.g. pointing devices and keyboards
  • bulk transfers - large sporadic transfers using all remaining available bandwidth (but with no guarantees on bandwidth or latency), e.g. file transfers

When a device (function) or hub is attached to the host controller through any hub on the bus, it is given a unique 7 bit address on the bus by the host controller. The host controller then polls the bus for traffic, usually in a round-robin fashion, so no device can transfer any data on the bus without explicit request from the host controller.

To access an endpoint, a hierarchical configuration must be obtained. The device connected to the bus has one (and only one) device descriptor which in turn has one or more configuration descriptors. These configurations often correspond to states, e.g. active vs. low power mode. Each configuration descriptor in turn has one or more interface descriptors, which describe certain aspects of the device, so that it may be used for different purposes: for example, a camera may have both audio and video interfaces. These interface descriptors in turn have one default interface setting and possibly more alternate interface settings which in turn have endpoint descriptors, as outlined above. An endpoint may however be reused among several interfaces and alternate interface settings.

The hardware that contains the host controller and the root hub has an interface toward the programmer which is called Host Controller Device (HCD) and is defined by the hardware implementer. In practice, these are hardware registers (ports) in the computer.

At version 1.0 and 1.1 there were two competing HCD implementations. Compaq's Open Host Controller Interface (OHCI) was adopted as the standard by the USB-IF. However, Intel subsequently created a specification they called the Universal Host Controller Interface (UHCI) and insisted other implementers pay to license and implement UHCI. VIA Technologies licensed the UHCI standard from Intel; all other chipset implementers use OHCI. The main difference between OHCI and UHCI is the fact that UHCI is more software-driven than OHCI is, making UHCI slightly more processor-intensive but cheaper to implement (excluding the license fees). The dueling implementations forced operating system vendors and hardware vendors to develop and test on both implementations which increased cost. During the design phase of USB 2.0 the USB-IF insisted on only one implementation. The USB 2.0 HCD implementation is called the Extended Host Controller Interface (EHCI). Only EHCI can support high-speed transfers. Each EHCI controller contains four virtual HCD implementations to support Full Speed and Low Speed devices. The virtual HCD on Intel and Via EHCI controllers are UHCI. All other vendors use virtual OHCI controllers.

On Microsoft Windows platforms, one can tell whether a USB port is version 2.0 by opening the Device Manager and checking for the word "Enhanced" in its description; only USB 2.0 drivers will contain the word "Enhanced." On Linux systems, the lspci command will list all PCI devices, and a controllers will be named OHCI, UHCI or EHCI respectively, which is also the case in the Mac OS X system profiler.

[Sunting] Kelas peranti

Devices that attach to the bus can be full-custom devices requiring a full-custom device driver to be used, or may belong to a device class. These classes define an expected behaviour in terms of device and interface descriptors so that the same device driver may be used for any device that claims to be a member of a certain class. An operating system is supposed to implement all device classes so as to provide generic drivers for any USB device. The most used device classes are:

  • USB human interface device class, keyboards, mice, etc.
  • USB mass storage device class used for keydrives, portable hard drives, Multi Media Card readers, digital cameras, digital audio players etc. This device class presents the device as a block device (almost always used to store a file system).
  • USB communications device class ("CDC") used for modems (and winmodems), network cards (and cross-over cables), ISDN connections, Fax
  • USB printer device class, printer-like devices
  • USB audio device class, sound card-like devices
  • USB video device class, webcam-like devices, motion image capture devices

Device classes are decided upon by the Device Working Group of the USB Implementers Forum.

[Sunting] Pengisyaratan USB

[Sunting] Pengisyaratan USB piawai

USB Standard-A, B plugs showing pin numbers (Not drawn to scale)
Besarkan
USB Standard-A, B plugs showing pin numbers (Not drawn to scale)
Standard USB connector pinout
Pin Function (host) Function (device)
1 VBUS (4.75–5.25 V) VBUS (4.4–5.25 V)
2 D− D−
3 D+ D+
4 Ground Ground

USB signals are transmitted on a twisted pair of data cables, labelled D+ and D−. These collectively use half-duplex differential signaling to combat the effects of electromagnetic noise on longer lines. D+ and D− operate together; they are not separate simplex connections.

[Sunting] Kelajuan pemindahan

USB supports three data rates.

  • A Low Speed rate of 1.5 Mbit/s (183 KiB/s) that is mostly used for Human Interface Devices (HID) such as keyboards, mice and joysticks.
  • A Full Speed rate of 12 Mbit/s (1.4 MiB/s). Full Speed was the fastest rate before the USB 2.0 specification and many devices fall back to Full Speed. Full Speed devices divide the USB bandwidth between them in a first-come first-served basis and it is not uncommon to run out of bandwidth with several isochronous devices. All USB Hubs support Full Speed.
  • A Hi-Speed rate of 480 Mbit/s (57 MiB/s).

Not all USB 2.0 devices are Hi-Speed. A USB device should specify the speed it will use by correct labeling on the box it came in or sometimes on the device itself. The USB-IF certifies devices and provides licenses to use special marketing logos for either "Basic-Speed" (low and full) or High-Speed after passing a compliancy test and paying a licensing fee.

Hi-Speed devices should fall back to the slower data rate of Full Speed when plugged into a Full Speed hub. Hi-Speed hubs have a special function called the Transaction Translator that segregates Full Speed and Low Speed bus traffic from Hi-Speed traffic. The Transaction Translator in a Hi-Speed hub (or possibly each port depending on the electrical design) will function as a completely separate Full Speed bus to Full Speed and Low Speed devices attached to it. This segregation is for bandwidth only; bus rules about power and hub depth still apply.

[Sunting] Pengisyaratan USB mini

USB Mini-A, B plugs showing pin numbers (Not drawn to scale)
Besarkan
USB Mini-A, B plugs showing pin numbers (Not drawn to scale)
Mini USB connector pinout
Pin Function
1 VBUS (4.4–5.25 V)
2 D−
3 D+
4 ID
5 Ground

Most of the pins of a mini USB connector are the same as a standard USB connector, except pin 4. Pin 4 is called ID and is connected to pin 5 for a mini-A and is either unconnected or connected to pin 5 through a resistor for a mini-B.

[Sunting] Penyambung USB

Penyambung yang jawatankuasa USB tetapkan direka bagi menyokong sejumlah matlamat asas USB, dan bagi menunjukkan pengalaman yang dipelajari daripada pelbagai pengurusan penyambung yang digunakan masa itu. Terutamanya:

  • Penyambung direka agar tahan. Banyak penyambung sebelumnya lemah, dengan pin atau komponen lemah lain yang cenderung untuk bengkok atau patah, walaupun dengan pemasangan mengunakan tenaga serdahana. Sambungan eletrik dalam penyambung USB dilindungi oleh lidah plastik bersebelahan, dan keseluruhan pemasangan sambungan dilindungi dengan lebih lanjut oleh sarung logam penuh. Dengan itu penyambung USB boleh dikendalikan dengan selamat, dicucuk, dan dialih, walaupun oleh kanak-kanak kecil. The encasing sheath and the tough moulded plug body mean that a connector can be dropped, stepped upon, even crushed or struck, all without damage; a considerable degree of force is needed to significantly damage a USB connector.
  • It is difficult to incorrectly attach a USB connector. Connectors cannot be plugged-in upside down, and it is clear from the appearance and kinesthetic sensation of making a connection when the plug and socket are correctly mated.
  • The connectors are particularly cheap to manufacture.
  • The connectors enforce the directed topology of a USB network. USB does not support cyclical networks, so the connectors from incompatible USB devices are themselves incompatible. Unlike other communications systems (e.g. RJ-45 cabling) gender-changers are never used, making it difficult to create a cyclic USB network.
  • A moderate insertion/removal force is specified. USB cables and small USB devices are held in place by the gripping force from the receptacle (without the need for the screws, clips, or thumbturns other connectors require). The force needed to make or break a connection is modest, allowing connections to be made in awkward circumstances or by those with motor disabilities.
  • The connector construction always ensures that the external sheath on the plug contacts with its counterpart in the receptacle before the four connectors within are connected. This sheath is typically connected to the system ground, allowing otherwise damaging static charges to be safely discharged by this route (rather than via delicate electronic components). This means of enclosure also means that there is a (moderate) degree of protection from electromagnetic interference afforded to the USB signal while it travels through the mated connector pair (this is the only location when the otherwise twisted data pair must travel a distance in parallel).
  • The USB standard specifies relatively low tolerances for compliant USB connectors, intending to minimize incompatibilities in connectors produced by different vendors (a goal that has been very successfully achieved). Unlike most other connector standards, the USB spec also defines limits to the size of a connecting device in the area around its plug. This was done to avoid circumstances where a device complied with the connector specification but its large size blocked adjacent ports. Compliant devices must either fit within the size restrictions or support a compliant extension cable which does.

The USB 1.0, 1.1 and 2.0 specifications define two types of connectors for the attachment of devices to the bus: A, and B. However, the mechanical layer has changed in some examples. For example, the IBM UltraPort is a proprietary USB connector located on the top of IBM's laptop LCDs. It uses a different mechanical connector while preserving the USB signaling and protocol. Other manufacturers of small items also developed their own small form factor connector, and a wide variety of these have appeared. For specification purposes, these devices were treated as having a captive cable.

An extension to USB called USB On-The-Go allows a single port to act as either a host or a device - chosen by which end of the cable plugs into the socket on the unit. Even after the cable is hooked up and the units are talking, the two units may "swap" ends under program control. This facility targets units such as PDAs where the USB link might connect to a PC's host port as a device in one instance, yet connect as a host itself to a keyboard and mouse device in another instance. USB On-The-Go has therefore defined two small form factor connectors, the mini-A and mini-B, and a hermaphroditic socket (mini-AB), which should stop the proliferation of proprietary designs.

Wireless USB is a promising future standard being developed to extend the USB standard while maintaining backwards compatibility with USB 1.1 and USB 2.0 on the protocol level.

The maximum length of a USB cable is 5 meters; greater lengths require hubs [1].

[Sunting] Bekalan kuasa

The USB connector provides a single nominally 5 volt wire from which connected USB devices may power themselves. In practice, delivered voltage can drop well below 5 V, to only slightly above 4 V. The compliance spec requires no more than 5.25 V anywhere and no less than 4.375 V at the worst case; a low-power function after a bus-powered hub. In typical situations the voltage is close to 5 V.

A given segment of the bus is specified to deliver up to 500 mA. This is often enough to power several devices, although this budget must be shared among all devices downstream of an unpowered hub. A bus-powered device may use as much of that power as allowed by the port it is plugged into.

Bus-powered hubs can continue to distribute the bus provided power to connected devices but the USB specification only allows for a single level of bus-powered devices from a bus-powered hub. This disallows connection of a bus-powered hub to another bus-powered hub. Many hubs include external power supplies which will power devices connected through them without taking power from the bus. Devices that need more than 500 mA must provide their own power.

When USB devices (including hubs) are first connected they are interrogated by the host controller, which enquires of each their maximum power requirements. The host operating system typically keeps track of the power requirements of the USB network and may warn the computer's operator when a given segment requires more power than is available (and will generally shut down devices or hubs in order to keep power consumption within the available resource).

A number of devices use this power supply without participating in a proper USB network. The typical example is a USB-powered reading light, but fans, battery chargers (particularly for mobile telephones) and even miniature vacuum cleaners are available. In most cases, these items contain no electronic circuitry, and thus are not proper USB devices at all. This can cause problems with some computers—the USB specification requires that devices connect in a low-power mode (100 mA maximum) and state how much current they need, before switching, with the host's permission, into high-power mode.

Some devices intended for connection to laptops draw more power than is permitted by the specification for a single USB port; to avoid requiring an exernal power supply, these devices come with dual cables, and the user is instructed that the device must be plugged-into two USB ports. On a laptop with only two ports, this means only one such device can be used at a time, unless a powered hub is added. A number of peripherals for IBM laptops (now made by Lenovo) are designed to use dual USB connections in this manner.

USB-powered devices attempting to draw large currents without requesting the power will not work with certain USB controllers, and will either disrupt other devices on the bus or fail to work themselves (or both). Those problems with the abuse of the USB power supply have inspired a number of April Fool hoaxes, like the introduction of a USB-powered George Foreman iGrill [2] and a desktop USB Fondue Set [3].

[Sunting] USB berbanding dengan piawai lain

[Sunting] Storan

Pemacu Flash, peranti storan massa USB yang tipikal
Besarkan
Pemacu Flash, peranti storan massa USB yang tipikal

USB implements connections to storage devices using a set of standards called the USB mass-storage device class. This was initially intended for traditional magnetic and optical drives, but has been extended to support a wide variety of devices. USB is not intended to be a primary bus for a computer's internal storage: buses such as ATA (IDE) and SCSI fulfill that role.

However, USB has one important advantage in making it possible to install and remove devices without opening the computer case, making it useful for external drives. Today, a number of manufacturers offer portable USB hard drives that offer performance comparable to conventional ATA (IDE) drives. These external drives, called enclosures, are often composed of translating devices that connect to USB on one side and to conventional IDE, ATA, ATAPI, or SCSI drives on the other. You install a drive into the enclosure and then plug the enclosure into the computer, thus creating the function of a regular USB mass-storage device.

FireWire technology is also commonly used with portable hard drives, some of which include both USB and FireWire ports. FireWire tends to perform better in speed benchmark tests. However, USB ports are more common on consumer-level computers, which enhances the portability of a USB drive.

[Sunting] Peranti antara muka manusia (HID)

USB belum lagi menggantikan sepenuhnya sambungan papan kekunci AT dan sambungan papan kekunci dan tetikus PS/2 , tetapi secara maya, semua papan induk PC dibina pada hari ini mempunyai satu atau lebih port USB. Setakat 2004, hampir semua papan induk baru mempunyai banyak port USB berhalaju-tinggi, walaupun ada di'dalam, dan memerlukan penyambung "header" untuk membolehkan dicapai accessible dari depan atau belakang kotak komputer case. Juga, sokongan pada kayu-ria, pad kekunci, tablet dan lain-lain peranti antara muka manusia sedang dipindahkan secara progresif dari MIDI, "game" dan sambungan PS/2 kepada USB. Adalah agak biasa sekarang bagi papan kekunci dan tetikus menjadi peranti USB, yang dihantar bersama alat pengubah USB-ke-PS/2 kecil yang disambungkan pada hujungnya, supaya ia boleh digunakan samada dengan USB atau PS/.

Komputer Apple telah menggunakan tetikus dan papan kekunci secara ekslusif sejak Januari 1999.

[Sunting] Sejarah versi

[Sunting] USB

  • USB 1.0 FDR: Dilancarkan pada November 1995, pada tahun yang sama Apple menggunakan piawaian IEEE 1394 dikenali sebagai FireWire.
  • USB 2.0: Dilancarkan pada April 2000. Ciri-ciri utama piwaian ini adalah tambahan mod kelajuan tinggi. Ini adalah revisi terkini.
  • USB 2.0: Diperbaharui pada Disember 2002. Tambahan tiga tahap perbezaan kelajuan pada piawaian ini, membolehkan semua alatan menjadi serasian USB 2.0 walaupun sebelumnya ia hanya dianggap serasian 1.1 atau 1.0. Ini membolehkan serasian kebelakang jelas, sungguhpun sukar membezakan daya pemprosesan peranti tanpa melihat pada simbolnya. Sebagai contoh, satu port mungkin tidak serasi mod pindahan data halaju-tinggi USB 2.0 tetapi masih boleh mendakwa ia serasian USB 2.0 (kerana ia menyokong sesetengah USB 2.0).

[Sunting] Tambahan USB On-The-Go

  • USB On-The-Go Supplement 1.0: Released in December 2001.
  • USB On-The-Go Supplement 1.0a: Released in June 2003. This is the current revision.

[Sunting] Lanjutan daripada USB

Piawaian PictBridge membolehkan sambungan penggunaan alatan pengimejan. Ia biasanya menggunakan USB sebagai asas lapisan komunikasinya.

Microsoft's Xbox game console menggunakan isyarat piawai USB 1.1, tetapi menggunakan bentuk penyambung tersendiri daripada penyambung piawai USB yang biasa. Begitu jua IBM UltraPort yang menggunakan isyarat piawai USB, tetapi menggunakan format penyambungnya sendiri.

Forum Pengimplementasi USB sedang mengusahakan piawai wireless networking berdasarkan protokol USB. Wireless USB berfungsi sebagai teknologi tanpa-kabel, dan akan menggunakan Ultra wideband teknologi wireles untuk pemindahan data sehingga 480 Mbit/s. USB wireles sangat sesuai untuk sambungan wireles PC, seperti Bluetooth yang sekarang digunakan secara meluas pada rangkaian berpusat persendirian telefon mudah alih (pada kadar data yang lebih rendah). Lihat http://www.usb.org/developers/wusb/ untuk keterangan lanjut.

[Sunting] Lihat juga

Lihat galeri mengenai: Bas bersiri sejagat di Wikimedia Commons.
  • ACCESS.bus
  • FireWire (also known as IEEE 1394, or I.link)
  • USB Flash Drive
  • USB streaming
  • U3
  • Serial cable (obsoleted by USB and Wi-Fi)

[Sunting] Pautan luar